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Abstract: Simultaneous Localization and Mapping 

(SLAM) achieves the purpose of simultaneous 

positioning and map construction based on 

self-perception. The paper makes an overview in 

SLAM including Lidar SLAM, visual SLAM, and 

their fusion. For Lidar or visual SLAM, the survey 

illustrates the basic type and product of sensors, open 

source system in sort and history, deep learning 

embedded, the challenge and future. Additionally, 

visual inertial odometry is supplemented. For Lidar 

and visual fused SLAM, the paper highlights the 

multi-sensors calibration, the fusion in hardware, data, 

task layer. The open question and forward thinking 

end the paper. The contributions of this paper can be 

summarized as follows: the paper provides a high 

quality and full-scale overview in SLAM. It's very 

friendly for new researchers to hold the development 

of SLAM and learn it very obviously. Also, the paper 

can be considered as dictionary for experienced 

researchers to search and find new interested 

orientation. 
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1. Introduction

SLAM is the abbreviation of Simultaneous 

Localization and Mapping, which contains two main 

tasks, localization and mapping. It is a significant 

open problem in mobile robotics: to move precisely, a 

mobile robot must have an accurate environment map; 

however, to build an accurate map, the mobile robot’s 

sensing locations must be known precisely [1]. In this 

way, simultaneous map building and localization can 

be seen to present a question of “which came first, 

the chicken or the egg?” (The map or the motion?)  

In 1990, [2] firstly proposed the use of the EKF 

(Extended Kalman Filter) for incrementally 

estimating the posterior distribution over robot pose 

along with the positions of the landmarks. In fact, 

starting from the unknown location of the unknown 

environment, the robot locates its own position and 

attitude through repeated observation of 

environmental features in the movement process, and 

then builds an incremental map of the surrounding 

environment according to its own position, so as to 

achieve the purpose of simultaneous positioning and 

map construction. Localization is a very complex and 

hot point in recent years. The technologies of 

localization depend on environment and demand for 

cost, accuracy, frequency and robustness, which can 

be achieved by GPS (Global Positioning System), 

IMU (Inertial Measurement Unit), and wireless signal, 

etc.[3,4]. But GPS can only work well outdoors and 

IMU system has cumulative error [5]. The technology 

of wireless, as an active system, can't make a balance 
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between cost and accuracy. With the fast 

development, SLAM equipped with Lidar, camera, 

IMU and other sensors springs up in last years. 

Begin with filter-based SLAM, Graph-based 

SLAM play a dominant role now. The algorithm 

derives from KF (Kalman Filter), EKF and PF 

(Particle Filter) to graph-based optimization. And 

single thread has been replaced by multi-thread. The 

technology of SLAM also changed from the earliest 

prototype of military use to later robot applications 

with the fusion of multi sensors. 

The organization of this paper can be 

summarized as follows: in Section II, Lidar SLAM 

including Lidar sensors, open source Lidar SLAM 

system, deep learning in Lidar and challenge as well 

as future will be illustrated. Section III highlights the 

visual SLAM including camera sensors, different 

density of open source visual SLAM system, visual 

inertial odometry SLAM, deep learning in visual 

SLAM and future. In Section IV, the fusion of Lidar 

and vision will be demonstrated. Finally, the paper 

identifies several directions for future research of 

SLAM and provides high quality and full-scale user 

guide for new researchers in SLAM. 

Table 1 Comparison of the different methods 

Methods Feature 

Lidar SLAM more stable and robust 

Visual SLAM cheaper  

Lidar and Visual SLAM more powerful 

 

2. Lidar SLAM 

In 1991, [1] used multiple servo-mounted sonar 

sensors and EKF filter to equip robots with SLAM 

system. Begin with sonar sensors, the birth of Lidar 

makes SLAM system more reliable and robustness. 

2.1 Lidar Sensors 

Lidar sensors can be divided into 2D Lidar and 

3D Lidar, which are defined by the number of Lidar 

beams. In terms of production process, Lidar can also 

be divided into mechanical Lidar, hybrid solid-state 

Lidar like MEMS (micro-electro-mechanical) and 

solid-state Lidar. Solid-state Lidar can be produced 

by the technology of phased array and flash. 

Velodyne: In mechanical Lidar, it has VLP-16, 

HDL-32E and HDL-64E. In hybrid solid-state Lidar, 

it has Ultra puck auto with 32E.   

SLAMTEC: it has low cost Lidar and robot 

platform such RPLIDAR A1, A2 and R3.  

Ouster: it has mechanical Lidar from 16 to 128 

channels. 

Quanergy: S3 is the first issued solid-state 

Lidar in the world and M8 is the mechanical Lidar. 

The S3-QI is the micro solid-state Lidar. 

Ibeo: It has Lux 4L and Lux 8L in mechanical 

Lidar. Cooperated with Valeo, it issued a hybrid 

solid-state Lidar named Scala. 

In the trend, miniaturization and lightweight 

solid state Lidar will occupied the market and be 

satisfied with most application. Other Lidar 

companies include but not limited to sick, Hokuyo, 

HESAI, RoboSense, LeddarTech, ISureStar, 

benewake, Livox, Innovusion, Innoviz, Trimble, 

Leishen Intelligent System. 

2.2 Lidar SLAM System 

Lidar SLAM system is reliable in theory and 

technology. [6] illustrated the theory in math about 

how to simultaneous localization and mapping with 

2D Lidar based on probabilistic. Furthre, [7] make 

surveys about 2D Lidar SLAM system. 

Table 2 Comparison of the different Lidar SLAM 

Methods Feature 

2D Lidar SLAM easier to positioning 

3D Lidar SLAM powerful to perceive 

 

2.2.1 2D SLAM 

Gmapping: it is the most used SLAM package 

in robots based on RBPF (Rao-Blackwellisation 

Partical Filter) method. It adds scan-match method to 

estimate the position [6,8]. It is the improved version 

with Grid map based on FastSLAM [9,10]. 

HectorSlam: it combines a 2D SLAM system  

and 3D navigation with scan-match technology and 

an inertial sensing system [11]. 

KartoSLAM: it is a graph-based SLAM system 

[12].  

LagoSLAM: its basic is the graph-based SLAM, 
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which is the minimization of a nonlinear non-convex 

cost function [13].  

CoreSLAm: it is an algorithm to be understood 

with minimum loss of performance [14].  

Cartographer: it is a SLAM system from 

Google [15]. It adopted sub-map and loop closure to 

achieve a better performance in product grade. The 

algorithm can provide SLAM in 2D and 3D across 

multiple platforms and sensor configurations. 

2.2.2 3D SLAM 

Loam: it is a real-time method for state 

estimation and mapping using a 3D Lidar [16]. It also 

has back and forth spin version and continuous 

scanning 2D Lidar version. 

Lego-Loam: it takes in point cloud from a 

Velodyne VLP-16 Lidar (placed horizontal) and 

optional IMU data as inputs. The system outputs 6D 

pose estimation in real-time and has global 

optimization and loop closure [17]. 

Cartographer: it supports 2D and 3D SLAM 

[15]. 

IMLS-SLAM: it presents a new low-drift 

SLAM algorithm based only on 3D LiDAR data 

based on a scan-to-model matching framework [18]. 

2.2.3 Deep Learning with Lidar SLAM 

Feature & Detection: PointNetVLAD [19] 

allows end-to-end training and inference to extract 

the global descriptor from a given 3D point cloud to 

solve point cloud based retrieval for place recognition. 

VoxelNet [20] is a generic 3D detection network that 

unifies feature extraction and bounding box 

prediction into a single stage, end-to-end trainable 

deep network. Other work can be seen in BirdNet 

[21]. LMNet [22] describes an efficient single-stage 

deep convolutional neural network to detect objects 

and outputs an objectness map and the bounding box 

offset values for each point. PIXOR [23] is a 

proposal-free, single-stage detector that outputs 

oriented 3D object estimates decoded from 

pixel-wise neural network predictions. Yolo3D [24] 

builds on the success of the one-shot regression 

meta-architecture in the 2D perspective image space 

and extend it to generate oriented 3D object bounding 

boxes from LiDAR point cloud. PointCNN [25] 

proposes to learn a X-transformation from the input 

points. The X-transformation is applied by 

element-wise product and sum operations of typical 

convolution operator. MV3D [26] is a sensory-fusion 

framework that takes both Lidar point cloud and 

RGB images as input and predicts oriented 3D 

bounding boxes. PU-GAN [27] presents a new point 

cloud upsampling network based on a generative 

adversarial network (GAN). Other similar work can 

be seen in this best paper in CVPR2018 but not 

limited to [28].  

Recognition & Segmentation: In fact, the 

method of segmentation to 3D point cloud can be 

divided into Edge-based, region growing, model 

fitting, hybrid method, machine learning application 

and deep learning [29]. Here the paper focuses on the 

methods of deep learning. PointNet [30] designs a 

novel type of neural network that directly consumes 

point clouds, which has the function of classification, 

segmentation and semantic analysis. PointNet++ [31] 

learns hierarchical features with increasing scales of 

contexts. VoteNet [32] constructs a 3D detection 

pipeline for point cloud as a end-to-end 3D object 

detection network, which is based on PointNet++. 

SegMap [33] is a map representation solution to the 

localization and mapping problem based on the 

extraction of segments in 3D point clouds. 

SqueezeSeg [34-36] are convolutional neural nets 

with recurrent CRF (Conditional random fields) for 

real-time road-object segmentation from 3d Lidar 

point cloud. PointSIFT [37] is a semantic 

segmentation framework for 3D point clouds. It is 

based on a simple module which extracts features 

from neighbor points in eight directions. PointWise 

[38] presents a convolutional neural network for 

semantic segmentation and object recognition with 

3D point clouds. 3P-RNN [39] is a novel end-to-end 

approach for unstructured point cloud semantic 

segmentation along two horizontal directions to 

exploit the inherent contextual features. Other similar 

work can be seen but not limited to SPG [40] and the 

review [29]. SegMatch [41] is a loop closure method 

based on the detection and matching of 3D segments. 

Kd-Network [42] is designed for 3D model 

recognition tasks and works with unstructured point 
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clouds. DeepTemporalSeg [43] propose a deep 

convolutional neural network (DCNN) for the 

semantic segmentation of a LiDAR scan with 

temporally consistency. LU-Net [44] achieve the 

function of semantic segmentation instead of 

applying some global 3D segmentation method. 

Other similar work can be seen but not limited to 

PointRCNN [45]. 

Localization: L3-Net [46] is a novel 

learning-based LiDAR localization system that 

achieves centimeter-level localization accuracy. 

SuMa++ [47] computes semantic segmentation 

results in point-wise labels for the whole scan, 

allowing us to build a semantically-enriched map 

with labeled surfels and  improve the projective 

scan matching via semantic constraints. 

2.3 Challenge and Future 

2.3.1 Cost and Adaptability 

The advantage of Lidar is that it can provide 3D 

information, and it is not affected by night and light 

change. In addition, the angle of view is relatively 

large and can reach 360 degrees. But the 

technological threshold of Lidar is very high, which 

lead to long development cycle and unaffordable cost 

on a large scale. In the future, miniaturization, 

reasonable cost, solid state, and achieving high 

reliability and adaptability is the trend. 

2.3.2 Low-Texture and Dynamic Environment 

Most SLAM system can just work in a fixed 

environment but things change constantly. Besides, 

low-Texture environment like long corridor and big 

pipeline will make trouble for Lidar SLAM. [48] uses 

IMU to assist 2D SLAM to solve above obstacles. 

Further, [49] incorporates the time dimension into the 

mapping process to enable a robot to maintain an 

accurate map while operating in dynamical 

environments. How to make Lidar SLAM more 

robust to low-texture and dynamic environment, and 

how to keep map updated should be taken into 

consideration more deeply. 

2.3.3 Adversarial Sensor Attack 

Deep Neural Network is easily attacked by 

adversarial samples, which is also proved in  

camera-based perception. But in Lidar-based 

perception, it is highly important but unexplored. By 

relaying attack, [50] firstly spoofs the Lidar with 

interference in output data and distance estimation. 

The novel saturation attack completely incapacitate a 

Lidar from sensing a certain direction based on 

Velodyne’s VLP-16. [51] explores the possibility of 

strategically controlling the spoofed attack to fool the 

machine learning model. The paper regards task as an 

optimization problem and design modeling methods 

for the input perturbation function and the objective 

function., which improves the attack success rates to 

around 75%. The adversarial sensor attack will spoof 

the SLAM system based on Lidar point cloud, which 

is invisible as hardly found and defended. In the case, 

research on how to prevent the Lidar SLAM system 

from adversarial sensor attack should be a new topic. 

3. Visual SLAM 

As the development of CPU and GPU, the 

capability of graphics processing  becomes more 

and more powerful. Camera sensors getting cheaper, 

more lightweight and more versatile at the same time. 

The past decade has seen the rapid development of 

visual SLAM. Visual SLAM using camera also make 

the system cheaper and smaller compare with Lidar 

system. Now, visual SLAM system can run in micro 

PC and embedded device, even in mobile devices like 

smart phones [52-56].  

Visual SLAM includes collection of sensors' 

data such as camera or inertial measurement unit , 

Visual Odometry or Visual Inertial Odometry in front 

end, Optimization in back end, Loop closure in back 

end and Mapping [57].  Relocalization is the 

additional modules for stable and accurate visual 

SLAM [58].  

In process of Visual Odometry, in addition to the 

method based on features or template matching, or 

correlation methods to determine the motion of the 

camera, there is another method relying on the 

Fourier-Mellin Transform [59]. [60] and [61] give the 

example in the environment with  no distinct visual 

features when use the ground-facing camera. 

3.1 Visual Sensors 
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The most used sensors that visual SLAM based 

are cameras. In detail, camera can be divided into 

monocular camera, stereo camera, RGB-D camera, 

event camera, etc. 

Monocular camera: visual slam based on 

monocular camera have a scale with real size of track 

and map. That's say that the real depth can't be got by 

monocular camera, which called Scale Ambiguity 

[62]. The SLAM based on Monocular camera has to 

initialization, and face the problem of drift. 

Stereo camera: stereo camera is a combination 

of two monocular camera but the distance called 

baseline between the two monocular camera is 

known. Although the depth can be got based on 

calibration, correction, matching and calculation, the 

process will be a waste of lost of resources.  

RGB-D camera: RGB-D camera also called 

depth camera because the camera can output depth in 

pixel directly. The depth camera can be realized by 

technology of stereo, structure-light and TOF. The 

theory of Structure-light is that infrared laser emits 

some pattern with structure feature to the surface of 

object. Then the IR camera will collect the change of 

patter due to the different depth in the surface. TOF 

will measure the time of laser's flight to calculate the 

distance. 

Event camera: [63] illustrates that instead of 

capturing images at a fixed rate, event camera 

measures per-pixel brightness changes 

asynchronously. Event camera has very high dynamic 

range (140 dB vs. 60 dB), high temporal resolution 

(in the order of us), low power consumption, and do 

not suffer from motion blur. Hence, event cameras 

can performance better than traditional camera in 

high speed and high dynamic range. The example of 

the event camera are Dynamic Vision Sensor [64-67], 

Dynamic Line Sensor [68], Dynamic and 

Active-Pixel Vision Sensor [69], and Asynchronous 

Time-based Image Sensor [70]. 

Next the product and company of visual sensors 

will be introduced: 

Microsoft: Kinectc v1(structured-light), Kinect 

v2(TOF), Azure Kinect(with microphone and IMU). 

Intel: 200 Series, 300 Series, Module D400 

Series, D415(Active IR Stereo, Rolling shutter), 

D435(Active IR Stereo, Global Shutter), D435i(D435 

with IMU). 

Stereolabs ZED: ZED Stereo camera(depth up 

to 20m). 

MYNTAI: D1000 Series(depth camera), 

D1200(for smart phone), S1030 Series(standard 

stereo camera). 

Occipital Structure: Structure Sensor(Suitable 

for ipad). 

Samsung: Gen2 and Gen3 dynamic vision 

sensors and event-based vision solution [65]. 

Other depth camera can be listed as follows but 

not limited to Leap Motion, Orbbec Astra, Pico 

Zense, DUO, Xtion, Camboard, IMI, Humanplus, 

PERCIPIO.XYZ, PrimeSense. Other event camera 

can be listed as follows but not limited to iniVation, 

AIT(AIT Austrian Institute of Technology), 

SiliconEye, Prophesee, CelePixel, Dilusense. 

3.2 Visual SLAM System 

The method of utilizing information from image 

can be classified into direct method and feature based 

method. Direct method leads to semiDense and dense 

construction while feature based method cause sparse 

construction. Next, some visual slam will be 

introduced ( ATAM7 is a visual SLAM toolkit for 

beginners [58]):  

Table 3 Comparison of the different Visual SLAM 

Methods Feature 

Sparse Vslam positioning, faster 

Semi-Dense Vslam Balance 

Dense Vslam Reconstruction, slow 

 

3.2.1 Sparse Visual SLAM 

MonoSLAM: it (monocular) is the first 

real-time mono SLAM system, which is based on 

EKF [71].  

PTAM: it (monocular) is the first SLAM system 

that parallel tracking and mapping. It firstly adopts 

Bundle Adjustment to optimize and concept of key 

frame [54,72]. The later version supports a trivially 

simple yet effective relocalization method [73]. 

ORB-SLAM: it (monocular) uses three threads: 

Tracking, Local Mapping and Loop Closing [52,74]. 
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ORB-SLAM v2 [75] supports monocular, stereo, and 

RGB-D cameras. CubemapSLAM [76] is a  SLAM 

system for monocular fisheye cameras based on 

ORB-SLAM. Visual Inertial ORB-SLAM [77,78] 

explains the initialization process of IMU and the 

joint optimization with visual information. 

proSLAM: it (stereo) is a lightweight visual 

SLAM system with easily understanding [79]. 

ENFT-sfm: it (monocular) is a feature tracking 

method which can efficiently match feature point 

correspondences among one or multiple video 

sequences [80]. The updated version ENFT-SLAM 

can run in large scale. 

OpenVSLAm: it (all types of cameras) [81] is 

based on an indirect SLAM algorithm with sparse 

features. The excellent point of OpenVSLAM is that 

the system supports perspective, fisheye, and 

equirectangular, even the camera models you design. 

TagSLAM: it realizes SLAM with AprilTag 

fiducial markers [82]. Also, it provides a front end to 

the GTSAM factor graph optimizer, which can design 

lots of experiments. 

Other similar work can be listed as follows but 

not limited to UcoSLAM [83]. 

3.2.2 SemiDense Visual SLAM 

LSD-SLAM:  it (monocular) proposes a novel 

direct tracking method which operates on Lie Algebra 

and direct method [84]. [85] make it supporting 

stereo cameras and [86] make it supporting 

omnidirectional cameras. Other similar work with 

omnidirectional cameras can be seen in [87]. 

SVO: it (monocular) is Semi-direct Visual 

Odoemtry [88]. It uses sparse model-based image 

alignment to get a fast speed. The update version is 

extended to multiple cameras, fisheye and 

catadioptric ones [78]. [78] gives detailed math proof 

about VIO. CNN-SVO [89] is the version of  SVO 

with the depth prediction from a single-image depth 

prediction network. 

DSO:  it (monocular) [90,91] is a new work 

from the author of LSD-SLAM [84]. The work 

creates a visual odoemtry based on direct method and 

sparse method without detection and description of 

feature point. 

EVO: it (Event camera) [92] is an event-based 

visual odometry algorithm. Our algorithm is 

unaffected by motion blur and operates very well in 

challenging, high dynamic range conditions with 

strong illumination changes. Other semiDense SLAM 

based on event camera can be seen in [93]. Other VO 

(visual odometry) system based on event camera can 

be seen in [94,95]. 

3.2.3 Dense Visual SLAM 

DTAM:  it (monocular) can reconstruct 3D 

model in real time based on minimizing a global 

spatially regularized energy functional in a novel 

non-convex optimization framework, which is called 

direct method [96,97]. 

MLM SLAM: it (monocular) can reconstruct 

dense 3D model online without graphics processing 

unit (GPU) [98]. The key contribution is a 

multi-resolution depth estimation and spatial 

smoothing process. 

Kinect Fusion: it (RGB-D) is almost the first 

3D reconstruction system with depth camera 

[99,100]. 

DVO: it (RGB-D)  proposes a dense visual 

SLAM method, an entropy-based similarity measure 

for keyframe selection and loop closure detection 

based g2o framework [101-103]. 

RGBD-SLAM-V2: it (RGB-D) can reconstruct 

accurate 3D dense model without the help of other 

sensors [104]. 

Kintinuous: it (RGB-D) is a visual SLAM 

system with globally consistent point and mesh 

reconstructions in real-time [105-107]. 

RTAB-MAP: it (RGB-D) supports simultaneous 

localization and mapping but it's hard to be basis to 

develop upper algorithm [108-110]. The latter version 

support both visual and Lidar SLAM [111]. 

Dynamic Fusion: it (RGB-D) presents the first 

dense SLAM system capable of reconstructing 

non-rigidly deforming scenes in real-time based 

Kinect Fusion [112]. VolumeDeform [113] also 

realizes real-time non-rigid reconstruction but not 

open source. The similar work can be seen in 

Fusion4D [114]. 

Elastic Fusion: it (RGB-D) is a real-time dense 

visual SLAM system capable of capturing 

comprehensive dense globally consistent surfel-based 
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maps of room scale environments explored using an 

RGB-D camera [115,116]. 

InfiniTAM: it (RGB-D) is a real time 3D 

reconstruction system with CPU in Linux, IOS, 

Android platform [55,117,118]. 

Bundle Fusion: it (RGB-D) supports robust 

tracking with recovery from gross tracking failures 

and re-estimates the 3D model in real-time to ensure 

global consistency [119]. 

KO-Fusion: it (RGB-D) [120] proposes a dense 

RGB-D SLAM system with kinematic and odometry 

measurements from a wheeled robot. 

SOFT-SLAM: it (stereo) [121] can create dense 

map with the advantages of large loop closing, which 

is based on SOFT [122] for pose estimation. 

Other works can be listed as follows but not 

limited to SLAMRecon, RKD-SLAM [123] and 

RGB-D SLAM [124]. Maplab [125], PointNVSNet 

[126], MID-Fusion [127] and MaskFusion [128] 

will introduced in next chapter. 

3.2.4 Visual Inertial Odometry SLAM 

The determination of visual slam is technically 

challenging. Monocular visual SLAM has problems 

such as necessary initialization, scale ambiguity and 

scale drift [129]. Although stereo camera and RGB-D 

camera can solve the problems of initialization and 

scale, some obstacles can't be ignored such as fast 

movement (solved with Global Shuttle or fisheye 

even panoramic camera), small field of view, large 

calculation, occlusion, feature loss, dynamic scenes 

and changing light. Recently, VIO (visual inertial 

odometry SLAM) becomes the popular research. 

First of all, [130-132] start some try in VIO. 

[77,78] give the samples and math proof in 

visual-inertial odeometry. [133] use several rounds of 

visual-inertial bundle adjustment to make a robust 

initialization for VIO. Specially, tango [134], Dyson 

360 Eye and hololens [135] are the real products of 

VIO and receive good feedback. In addition to this, 

ARkit (filter-based) from Apple, ARcore (filter-based) 

from Google, Inside-out from uSens are the 

technology of VIO. PennCOSYVIO [136] 

synchronizes data from a VI-sensor (stereo camera 

and IMU), two Project Tango hand-held devices, and 

three GoPro Hero 4 cameras and calibrates 

intrinsically and extrinsically. Next some open source 

VIO system will be introduced [137]: 

SSF: it (loosely-coupled, filter-based) is a time 

delay compensated single and multi sensor fusion 

framework based on an EKF [138]. 

MSCKF: it (tightly-coupled, filter-based) is 

adopted by Google Tango based on extended Kalman 

filter [139]. But the similar work called 

MSCKF-VIO [140] open the source. 

ROVIO: it (tightly-coupled, filter-based) is an 

extended Kalman Filter with tracking of both 3D 

landmarks and image patch features [141]. It supports 

monocular camera. 

OKVIS: it (tightly-coupled, optimization-based) 

is an open and classic Keyframe-based Visual-Inertial 

SLAM [130]. It supports monocular and stereo 

camera based sliding window estimator. 

VINS: VINS-Mono (tightly-coupled, 

optimization-based) [53,142,143] is a real-time 

SLAM framework for Monocular Visual-Inertial 

Systems. The open source code runs on Linux, and is 

fully integrated with ROS. VINS-Mobile [144,145] 

is a real-time monocular visual-inertial odometry 

running on compatible iOS devices. Furthermore, 

VINS-Fusion supports multiple visual-inertial sensor 

types (GPS, mono camera + IMU, stereo cameras + 

IMU, even stereo cameras only). It has online spatial 

calibration, online temporal calibration and visual 

loop closure. 

ICE-BA: it (tightly-coupled, optimization-based) 

presents an incremental, consistent and efficient 

bundle adjustment for visual-inertial SLAM, which  

performs in parallel both local BA over the sliding 

window and global BA over all keyframes, and 

outputs camera pose and updated map points for each 

frame in real-time [146]. 

Maplab: it (tightly-coupled, optimization-based) 

is an open, research-oriented visual-inertial mapping 

framework, written in C++, for creating, processing 

and manipulating multi-session maps. On the one 

hand, maplab can be considered as a ready-to-use 

visual-inertial mapping and localization system. On 

the other hand, maplab provides the research 

community with a collection of multi-session 

mapping tools that include map merging, 
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visual-inertial batch optimization, loop closure, 3D 

dense reconstruction [125]. 

Other solutions can be listed as follows but not 

limited to VI-ORB (tightly-coupled, 

optimization-based) [77] (the works by the author of 

ORB-SLAM, but not open source), StructVIO [147]. 

RKSLAM [148] can reliably handle fast motion and 

strong rotation for AR applications. Other VIO 

system based on event camera can be listed as 

follows but not limited to [149-151]. mi-VINS [152] 

uses multiple IMU, which can work if IMU sensor 

failures. 

In VIO, visual images can enhance the inertial 

navigation algorithm. To deal with the correlation 

between the generated visual odometry and also 

about the multiframe visual odometry, [153] 

integrates the features tracked from all overlapping 

image frames by a sequential de-correlation the 

Kalman filter measurement update with fever 

computation resources consumption. The proposed 

method is referred as multi-frame visual odometry 

(MFVO) [154]. In the image-aided inertial integrated 

navigation, the relative positions of visual odometry 

are pairwise correlated in terms of time. The shaping 

filter proposed [155] uses Cholesky factors based on 

that the measurement noise is only correlated with 

the ones from the previous epoch. 

VIO SLAM based on deep learning can be seen 

in [156]. It shows a network that performs 

visual-inertial odometry (VIO) without inertial 

measurement unit (IMU) intrinsic parameters or the 

extrinsic calibration between an IMU and camera. 

[157] provides a network to avoid the calibration 

between camera and IMU. 

3.2.5 Deep Learning with Visual SLAM 

Nowadays, deep learning plays a critical role in 

the maintenance of computer vision. As the 

development of visual SLAM, more and more focus 

are paid into deep learning with SLAM. The term 

"semantic SLAM" refers to an approach that includes 

the semantic information into the SLAM process to 

enhance the performance and representation by 

providing high-level understanding, robust 

performance, resource awareness, and task driven 

perception. Next, we will introduce the implement of 

SLAM with semantic information in these aspects: 

Feature & Detection: Pop-up SLAM 

(Monocular) [158] proposes real-time monocular 

plane SLAM to demonstrate that scene understanding 

could improve both state estimation and dense 

mapping especially in low-texture environments. The 

plane measurements come from a pop-up 3D plane 

model applied to each single image. [159] gets 

semantic key points predicted by a convolutional 

network (convnet). LIFT [160] can get more dense 

feature points than SIFT. DeepSLAM [161] has a 

significant performance gap in the presence of image 

noise when catch the feature points. SuperPoint [162] 

presents a self-supervised framework for training 

interest point detectors and descriptors suitable for a 

large number of multiple-view geometry problems in 

computer vision. [163] proposes to use the 

easy-to-labeled 2D detection and discrete viewpoint 

classification together with a light-weight semantic 

inference method to obtain rough 3D object 

measurements. GCN-SLAM [164] presents a deep 

learning-based network, GCNv2, for generation of 

key points and descriptors. [165] fuses information 

about 3D shape, location, and, if available, semantic 

class. SalientDSO [166] can realize visual saliency 

and environment perception with the aid of deep 

learning. [167] integrates the detected objects as the 

quadrics models into the SLAM system. CubeSLAM 

(Monocular) is a 3D Object Detection and SLAM 

system [168] based on cube model. It achieve 

object-level mapping, positioning, and dynamic 

object tracking. [169] combines the cubeSLAM 

(high-level object) and Pop-up SLAM (plane 

landmarks) to make map more denser, more compact 

and semantic meaningful compared to feature point 

based SLAM. MonoGRNet [170] is a geometric 

reasoning network for monocular 3D object detection 

and localization. Feature based on event camera can 

be seen but not limited to [171,172]. About the 

survey in deep learning for detection, [173] could be 

a good choice.  

Recognition & Segmentation: SLAM++ (CAD 

model) [174] presents the major advantages of a new 

‘object oriented’ 3D SLAM paradigm, which takes 

full advantage in the loop of prior knowledge that 
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many scenes consist of repeated, domain-specific 

objects and structures. [175] combines the state-of-art 

deep learning method and LSD-SLAM based on 

video stream from a monocular camera. 2D semantic 

information are transferred to 3D mapping via 

correspondence between connective keyframes with 

spatial consistency. Semanticfusion (RGBD)  [176] 

combines CNN (Convolutional Neural Network) and 

a state-of-the-art dense Simultaneous Localization 

and Mapping (SLAM) system, ElasticFusion [116] to 

build a semantic 3D map. [177] leverages sparse, 

feature-based RGB-D SLAM, image-based 

deep-learning object detection and 3D unsupervised 

segmentation. MarrNet [178] proposes an 

end-to-end trainable framework, sequentially 

estimating 2.5D sketches and 3D object shapes. 

3DMV (RGB-D) [179] jointly combines RGB color 

and geometric information to perform 3D semantic 

segmentation of RGB-D scans. Pix3D [180] study 

3D shape modeling from a single image. 

ScanComplete [181] is a data-driven approach 

which takes an incomplete 3D scan of a scene as 

input and predicts a complete 3D model, along with 

per-voxel semantic labels. Fusion++ [182] is an 

online object-level SLAM system which builds a 

persistent and accurate 3D graph map of arbitrary 

reconstructed objects. As an RGB-D camera browses 

a cluttered indoor scene, Mask-RCNN instance 

segmentations are used to initialise compact 

per-object Truncated Signed Distance Function 

(TSDF) reconstructions with object size dependent 

resolutions and a novel 3D foreground mask. 

SegMap [183] is a map representation based on 3D 

segments allowing for robot localization, 

environment reconstruction, and semantics extraction. 

3D-SIS [184] is a novel neural network architecture 

for 3D semantic instance segmentation in commodity 

RGB-D scans. DA-RNN [185] uses a new recurrent 

neural network architecture for semantic labeling on 

RGB-D videos. DenseFusion [186] is a generic 

framework for estimating 6D pose of a set of known 

objects from RGB-D images. Other work can be seen 

in CCNet [187]. To recognize based on event camera, 

[188-191] are the best paper to be investigated. 

Recovery Scale: CNN-SLAM (Monocular) 

[192] estimates the depth with deep learning. Another 

work can be seen in DeepVO [193], GS3D [194] . 

UnDeepVO [195] can get the 6-DoF pose and the 

depth using a monocular camera with deep learning. 

Google proposes the work [196] that present a 

method for predicting dense depth in scenarios where 

both a monocular camera and people in the scene are 

freely moving based on unsupervised learning. Other 

methods to get real scale in Monocular can be seen in 

[197,198]. GeoNet [199] is a jointly unsupervised 

learning framework for monocular depth, optical 

flow and ego-motion estimation from videos. 

CodeSLAM [200] proposes a depth map from single 

image, which can be optimised efficiently jointly 

with pose variables. Mono-stixels [201] uses the 

depth, motion and semantic information in dynamic 

scene to estimate depth. GANVO [202] uses an  

unsupervised learning framework for 6-DoF pose and 

monocular depth map from unlabelled image, using 

deep convolutional Generative Adversarial Networks. 

GEN-SLAM [203] outputs the dense map with the 

aid of conventional geometric SLAM and the 

topological constraint in monocular. [204] proposes a 

training objective that is invariant to changes in depth 

range and scale. Other similar work can be seen in 

DeepMVS [205] and DeepV2D [206]. Based on 

event camera, depth estimation can be applied in 

monocular camera [207,208] and stereo camera 

[209].  

Pose Output & Optimization:  [210] is a 

stereo-VO under the synchronicity. [211] utilizes a 

CNN to estimate motion from optical flow. PoseNet 

[212] can get the 6-DOF pose from a single RGB 

image without the help of optimization. VInet 

(Monocular) [213] firstly estimates the motion in 

VIO, reducing the dependence of manual 

synchronization and calibration. DeepVO 

(Monocular) [214] presents a novel end-to-end 

framework for monocular VO by using deep 

Recurrent Convolutional Neural Networks (RCNNs). 

The similar work can be seen in SFMlearner [215] 

and SFM-Net [216]. VSO [217] proposes a novel 

visual semantic odometry (VSO) framework to 

enable medium-term continuous tracking of points 

using semantics. MID-Fusion (RGBD, dense point 
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cloud) [127] estimates the pose of each existing 

moving object using an object-oriented tracking 

method and associate segmented masks with existing 

models and incrementally fuse corresponding color, 

depth, semantic, and foreground object probabilities 

into each object model. Other similar works can be 

seen in VidLoc [218]. Besides, [219,220] are using 

event camera to output the ego-motion. 

Long-term Localization: [221] formulates an 

optimization problem over sensor states and semantic 

landmark positions that integrates metric information, 

semantic information, and data associations. [222] 

proposes a novel unsupervised deep neural network 

architecture of a feature embedding for visual loop 

closure. [223] shows the semantic information is 

more effective than the traditional feature descriptors. 

X-View [224] leverages semantic graph descriptor 

matching for global localization, enabling 

localization under drastically different view-points. 

[225] proposes a solution that represents hypotheses 

as multiple modes of an equivalent non-Gaussian 

sensor model to determine object class labels and 

measurement-landmark correspondences. About the 

application based on event camera, [226] are worthy 

to be read.  

Dynamic SLAM: RDSLAM [227]  is a novel 

real-time monocular SLAM system which can 

robustly work in dynamic environments based on a 

novel online keyframe representation and updating 

method. DS-SLAM [228] is a SLAM system with 

semantic information based on optimized 

ORB-SLAM. The semantic information can make 

SLAM system more robust in dynamic environment. 

MaskFusion (RGB-D, dense point cloud) is a 

real-time, object-aware, semantic and dynamic 

RGB-D SLAM system [128] based on Mask R-CNN 

[229]. The system can label the objects with semantic 

information even in continuously and independent 

motion. The related work can be seen in Co-Fusion 

[230]. Detect-SLAM [231] integrates SLAM with a 

deep neural network based object detector to make 

the two functions mutually beneficial in an unknown 

and dynamic environment. DynaSLAM [232] is a 

SLAM system for monocular, stereo and RGB-D 

camera in dynamic environments with aid of static 

map. StaticFusion [233] proposes a method for 

robust dense RGB-D SLAM in dynamic 

environments which detects moving objects and 

simultaneously reconstructs the background structure. 

The related work based on dynamic environment can 

be also seen in RGB-D SLAM [124] and [234-236]. 

Recently, some works utilizes deep-learning to 

dominate the whole process of SLAM. SimVODIS 

[237] can output the depth and the relative pose 

between frames, while detecting objects and 

segmenting the object boundaries. 

3.3 Challenge and Future 

3.3.1 Robustness and Portability 

Visual SLAM still face some important 

obstacles like the illumination condition, high 

dynamic environment, fast motion, vigorous rotation 

and low texture environment. Firstly, global shutter 

instead of rolling shutter is fundamental to achieve 

accurate camera pose estimation. Event camera such 

as dynamic vision sensors is capable of producing up 

to one million events per second which is enough for 

very fast motions in high speed and high dynamic 

range. Secondly, using semantic features like edge, 

plane, surface features, even reducing feature 

dependencies, such as tracking with join edges, direct 

tracking, or a combination of machine learning may 

become the better choice. Thirdly, based 

mathematical machinery for SfM/SLAM, the precise 

mathematical formulations to outperform implicitly 

learned navigation functions over data is preferred. 

The future of SLAM has can be expected that 

one is SLAM based on smart phones or embedded 

platforms such as UAV (unmanned aerial vehicle) 

and another is detailed 3D reconstruction, scene 

understanding with deep learning.  How to balance 

real-time and accuracy is the vital open question. The 

solutions pertaining to dynamic, unstructured, 

complex, uncertain and large-scale environments are 

yet to be explored [238]. 

3.3.2 Multiple Sensors Fusion 

The actual robots and hardware devices usually 

do not carry only one kind of sensor, and often a 

fusion of multiple sensors. For example, the current 
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research on VIO on mobile phones combines visual 

information and IMU information to realize the 

complementary advantages of the two sensors, which 

provides a very effective solution for the 

miniaturization and low cost of SLAM. DeLS-3D 

[239] design is a sensor fusion scheme which 

integrates camera videos, motion sensors (GPS/IMU), 

and a 3D semantic map in order to achieve robustness 

and efficiency of the system. There are sensors listed 

as follows but not limited to Lidar, Sonar, IMU, IR, 

camera, GPS, radar, etc. The choice of sensors is 

dependent on the environment and required type of 

map. 

3.3.3 Semantics SLAM 

In fact, humans recognize the movement of 

objects based on perception not the features in image.  

Deep learning in SLAM can realize object 

recognition and segmentation, which help the SLAM 

system perceive the surrounding better. Semantics 

SLAM can also do a favor in global optimization, 

loop closure and relocalization. [240]: Traditional 

approaches for simultaneous localization and 

mapping (SLAM) depend on geometric features such 

as points, lines (PL-SLAM [241], StructSLAM 

[242] ), and planes to infer the environment structure. 

The aim of high-precision real-time positioning in 

large-scale scenarios could be achieved by semantics 

SLAM, which teaches robots perceive as humans. 

3.3.4 Software & hardware 

SLAM is not an algorithm but an integrated, 

complex technology [243]. It not only depend on 

software, but also hardware. The future SLAM 

system will focus in the deep combination of 

algorithm and sensors. Based on illustration above, 

the domain specific processors rather than general 

processor, integrated sensors module rather than 

separate sensor like just camera will show great 

potential. The above work make the developer focus 

on the algorithm and accelerate the release of real 

products. 

4. Lidar and Visual SLAM System 

4.1 Multiple Sensors Calibration 

Camera & IMU: Kalibr [244] is a toolbox that 

solves the following calibration problems: Multiple 

camera calibration, Visual-inertial calibration 

(camera-IMU) and Rolling Shutter Camera 

calibration. Vins-Fusion [143] has online spatial 

calibration  and online temporal calibration.  

MSCKF-VIO [140] also has the calibration for 

camera and IMU. mc-VINS [245] can calibrate the 

extrinsic parameters and time offset between all 

multiple cameras and IMU. Besides, IMU-TK 

[246][247] can calibrate internal parameter of IMU. 

Other work can be seen in [248]. [249] proposes a 

end to end network for monocular VIO, which fuses 

data from camera and IMU. 

Camera & Depth: BAD SLAM [250] proposes 

a calibrated benchmark for this task that uses 

synchronized global shutter RGB and depth cameras. 

Camera & Camera: mcptam [251] is a SLAM 

system using multi-camera. It can also calibrate the 

intrinsic and extrinsic parameters. MultiCol-SLAM 

[252] is a multi-fisheye camera SLAM. Besides, the 

updated version of SVO can also support multiple 

cameras. Other similar work can be seen in ROVIO 

[253]. 

Lidar & IMU: LIO-mapping [254] introduces 

a tightly coupled lidar-IMU fusion method. 

Lidar-Align is a simple method for finding the 

extrinsic calibration between a 3D Lidar and a 6-Dof 

pose sensor. Extrinsic calibration of Lidar can be seen 

in [255][256]. The doctoral thesis [257] illustrate the 

work of Lidar calibration.  

Camera & Lidar: [258] introduces a 

probabilistic monitoring algorithm and a continuous 

calibration optimizer that enable camera-laser 

calibration online, automatically. Lidar-Camera 

[259] proposes a novel pipeline and experimental 

setup to find accurate rigid-body transformation for 

extrinsically calibrating a LiDAR and a camera using 

3D-3D point correspondences. RegNet [260] is the 

first deep convolutional neural network (CNN) to 

infer a 6 degrees of freedom (DOF) extrinsic 

calibration between multi-modal sensors, exemplified 

using a scanning LiDAR and a monocular camera. 

LIMO [261] proposes a depth extraction algorithm 

from LIDAR measurements for camera feature tracks 
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and estimating motion. CalibNet [262] is  a 

self-supervised deep network capable of 

automatically estimating the 6-DoF rigid body 

transformation between a 3D LiDAR and a 2D 

camera in real-time. The calibration tool from 

Autoware can calibrate the signal beam Lidar and 

camera. . Other work can be seen as follows but not 

limited to [263-265]. 

Other work like SVIn2 [266] demonstrates an 

underwater SLAM system fusing Sonar, Visual, 

Inertial, and Depth Sensor, which is based on OKVIS.  

[267] proposes a new underwater camera-IMU 

calibration model and [268] detects underwater 

obstacle using semantic image Segmentation. 

WiFi-SLAM [269] demonstrates a novel SLAM 

technology with wireless signal named WiFi. [270] 

uses the mmWave to locate even the NLOS robots 

and [271,272] introduce more technique about 

localization with the aid of wirless signals. 

KO-Fusion [120] fuses visual and wheeled odometer. 

[273] uses a thermal camera with IMU in visually 

degraded environments e.g. darkness. 

4.2 Lidar and Visual Fusion 

Hardware layer: Pandora from HESAI is a 

software and hardware solution integrating 40 beams 

Lidar, five color cameras and recognition algorithm. 

The integrated solution can comfort developer from 

temporal and spatial synchronization. Understanding 

the exist of CONTOUR and STENCIL from 

KAARTA will give you a brainstorming. 

Data layer: Lidar has sparse, high precision 

depth data and camera has dense but low precision 

depth data, which will lead to image-based depth 

upsampling and image-based depth 

inpainting/completion. [274] presents a novel method 

for the challenging problem of depth image 

upsampling. [275] relies only on basic image 

processing operations to perform depth completion of 

sparse Lidar depth data. With deep learning, [276] 

proposes the use of a single deep regression network 

to learn directly from the RGB-D raw data, and 

explore the impact of number of depth samples. [277] 

considers CNN operating on sparse inputs with an 

application to depth completion from sparse laser 

scan data. DFuseNet [278] proposes a CNN that is 

designed to upsample a series of sparse range 

measurements based on the contextual cues gleaned 

from a high resolution intensity image. Other similar 

work can be seen as follows but not limited to 

[279][280]. LIC-Fusion [281] fuses IMU 

measurements, sparse visual features, and extracted 

LiDAR points. 

Task layer: [282] fuses stereo camera and Lidar 

to perceive. [283] fuses radar, Lidar, and camera to 

detect and classify moving objects. Other traditional 

work can be seen but not limited to [284-286]. [287] 

can augment VO by depth information such as 

provided by RGB-D cameras, or from Lidars 

associated with cameras even if sparsely available. 

V-Loam [288] presents a general framework for 

combining visual odometry and Lidar odometry. The 

online method starts with visual odometry and scan 

matching based Lidar odometry refines the motion 

estimation and point cloud registration 

simultaneously. VL-SLAM [289] is concerned with 

the development of a system that combines an 

accurate laser odometry estimator, with algorithms 

for place recognition using vision for achieving loop 

detection. [290] aims at the tracking part of SLAM 

using an RGB-D camera and 2d low-cost LIDAR to 

finish a robust indoor SLAM by a mode switch and 

data fusion. VIL-SLAM [291] incorporates 

tightly-coupled stereo VIO with Lidar mapping and 

Lidar enhanced visual loop closure. [292] combines 

monocular camera images with laser distance 

measurements to allow visual SLAM without errors 

from increasing scale uncertainty. In deep learning, 

many methods to detect and recognize fusing data 

from camera and Lidar such as PointFusion [293], 

RoarNet [294], AVOD [295], MV3D [26],  

FuseNet [296]. Other similar work can be seen in 

[297]. Besides, [298] exploits both Lidar as well as 

cameras to perform very accurate localization with a  

an end-to-end learnable architecture. [299] fuses 3D 

Lidar and monocular camera. 

4.3 Challenge and Future[300] 

Data Association:  the future of SLAM must 

integrate multi-sensors. But different sensors have 

different data types, time stamps, and coordinate 

system expressions, needed to be processed 
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uniformly. Besides, physical model establishment, 

state estimation and optimization between 

multi-sensors should be taken into consideration. 

Integrated Hardware: at present, there is no 

suitable chip and integrated hardware to make 

technology of SLAM more easily to be a product. On 

the other hand,  if the accuracy of a sensor degrades 

due to malfunctioning, off-nominal conditions, or 

aging, the quality of the sensor measurements (e.g., 

noise, bias) does not match the noise model. The 

robustness and integration of hardware should be 

followed. Sensors in front-end should have the 

capability to process data and the evolution from 

hardware layer to algorithm layer, then to function 

layer to SDK should be innovated to application.  

Crowdsourcing: decentralized visual SLAM is 

a powerful tool for multi-robot applications in 

environments where absolute positioning systems are 

not available [301]. Co-optimization visual 

multi-robot SLAM need decentralized data and 

optimization, which is called crowdsourcing. The 

privacy in the process of decentralized data should 

come into attention. The technology of differential 

privacy [302][303] maybe do a favor.  

High Definition Map: High Definition Map is 

vital for robots. But which type of map is the best for 

robots? Could dense map or sparse map navigate, 

positioning and path plan? A related open question 

for long-term mapping is how often to update the 

information contained in the map and how to decide 

when this information becomes outdated and can be 

discarded. 

Adaptability, Robustness, Scalability:  as we 

know, no SLAM system now can cover all scenarios. 

Most of it requires extensive parameter tuning in 

order to work correctly for a given scenario. To make 

robots perceive as humans, appearance-based instead 

of feature-based method is preferred, which will help 

close loops integrated with semantic information 

between day and night sequences or between 

different seasons.  

Ability against risk and constraints: Perfect 

SLAM system should be failure-safe and 

failure-aware. It's not the question about 

relocalization or loop closure here. SLAM system 

must have ability to response to risk or failure. In the 

same time, an ideal SLAM solution should be able 

run on different platforms no matter the 

computational constraints of platforms. How to 

balance the accuracy, robustness and the limited 

resource is a challenging problem [137].  

Application: the technology of SLAM has a 

wide application such as: large-scale positioning, 

navigation and 3D or semantic map construction, 

environment recognition and understanding,  ground 

robotics, UAV, VR/AR/MR, AGV(Automatic Guided 

Vehicle), automatic drive, virtual interior decorator, 

virtual fitting room, immersive online game, 

earthquake relief, video segmentation and editing. 

Open question: Will end-to-end learning 

dominate SLAM? 

5. An Envision in 6G Wireless 

Nowadays, 5G has been developed widely to 

communicate more quickly and massively [272]. But 

for robots and autonomous driving cars, the 

technology of SLAM need greater data rates and less 

latency that 5G can't afford. Unlike 100 Gbps of data 

rates for 5G, 6G can provide greater data rates due to 

the frequency in 100 GHz to 3 THz (terahertz).  

THz is the last unexplored band in the radio 

frequency spectrum. Less than the THz, the radio 

bands are called microwave. The radio frequency of 

optical bands , which are regarded as visible light 

communications (VLC), are more than THz [304]. 

The 6G technology will need no supports such as 

multiple-input multiple-output (MIMO) in 5G 

represented as mmWave communications. As for the 

difference with VLC, 6G with the THz 

communications will not affected by the light 

changes and NLOS. 

5.1 Lidar and Visual Fusion 

For the advance of wireless communication 

system, industry and academic are urged to pay 

attention to the research of 6G. Next, we will 

introduce some advantages of 6G [305].   

Low Latency: Less than 1 msec end-to-end 

latency;  

Data rate: High data rates up to 1 Tbps; 
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Ultra-high bandwidth: Very broad frequency 

bands; 

Energy save: Very high energy efficiency;  

Ubiquitous connection: Enable to connect 

global network including the massive intelligent 

things and the emergence of smart surface and 

environment such as walls, roads even the whole 

buildings.  

Intelligent network: AI and RISs make it 

smarter and beyond classical big data analytics and 

edge computation. 

Ubiquitous connection: Enable to connect 

everything. 

6G is supposed as the platforms to serve for 

communication, computation, and storage resources 

with the aid of AI [306]. 

5.2 6G in Simultaneous Localization and Mapping 

SLAM can be divided into radio-based (such as 

satellite positioning, cellular and WiFi) and 

sensor-based (such as Lidar, IMU and camera) [307]. 

With the wireless technology, the technology of 

SLAM can be achieved by constructing the map of 

environment and projecting the angle and the time of 

arrival to estimate the locations from the users. The 

conventional mmWave method utilizing  

AoA-based positioning or a combination of path loss 

and AoA, and RSSI [271]. With the aid of 

Reconfigurable intelligent surfaces (RISs),  

localization and mapping can improve accuracy and 

extended physical coverage. 

It's apparent that 6G with THz will create 

centimeter level accuracy even in NLOS environment 

and 6G will provide a network to sense and 

localization rather than a independent source [308] 

for SLAM. Cause the greater data rates, the massive 

computations can be conducted in remote device or 

machine, which relief the pressure of computer 

power in robots and autonomous driving cars.  

In the future, THz will enable the robots and 

autonomous driving cars with new capability of 

sensing the gas, air quality, health detection, body 

scanning and so on. Plus, with the aid of THz, 

computer vision will be augmented to see the NLOS 

views, which will play a vital role in rescue and 

sensing. In the basic, the accuracy of positioning will 

be improved to sub-centimeter level and the map of 

surrounding environment will be constructed as 3D 

maps without any calibration and prior knowledge, 

which is hard to realized before. Moreover, 6G and 

AI will achieve excellent successes again in future 

digital society with the full connectivity demands. 

References 

[1]  John J Leonard and Hugh F Durrant-Whyte. 

Simultaneous map build- ing and localization for an 

autonomous mobile robot. In Proceedings IROS’91: 

IEEE/RSJ International Workshop on Intelligent 

Robots and Systems’ 91, pages 1442–1447. Ieee, 

1991.  

[2]  Randall Smith, Matthew Self, and Peter 

Cheeseman. Estimating un- certain spatial 

relationships in robotics. In Autonomous robot 

vehicles, pages 167–193. Springer, 1990.  

[3]  Baichuan Huang, Jingbin Liu, Wei Sun, and Fan 

Yang. A robust indoor positioning method based on 

bluetooth low energy with separate channel 

information. Sensors, 19(16):3487, 2019.  

[4]  Jingbin Liu, Ruizhi Chen, Yuwei Chen, Ling Pei, 

and Liang Chen. iparking: An intelligent indoor 

location-based smartphone parking service. Sensors, 

12(11):14612–14629, 2012.  

[5]  Jingbin Liu, Ruizhi Chen, Ling Pei, Robert 

Guinness, and Heidi Kuusniemi. A hybrid 

smartphone indoor positioning solution for mobile 

lbs. Sensors, 12(12):17208–17233, 2012.  

[6]  Sebastian Thrun, Wolfram Burgard, and Dieter 

Fox. Probabilistic robotics. MIT press, 2005.  

[7]  Joao Machado Santos, David Portugal, and Rui 

P Rocha. An evalu- ation of 2d slam techniques 

available in robot operating system. In 2013 IEEE 

International Symposium on Safety, Security, and 

Rescue Robotics (SSRR), pages 1–6. IEEE, 2013.  



9 
 

108 

[8]  Giorgio Grisetti, Cyrill Stachniss, Wolfram 

Burgard, et al. Improved techniques for grid mapping 

with rao-blackwellized particle filters. IEEE 

transactions on Robotics, 23(1):34, 2007.  

[9] Michael Montemerlo, Sebastian Thrun, Daphne 

Koller, Ben Wegbreit, et al. Fastslam: A factored 

solution to the simultaneous localization and 

mapping problem. Aaai/iaai, 593598, 2002.  

[10] Michael Montemerlo, Sebastian Thrun, Daphne 

Koller, Ben Wegbreit, et al. Fastslam 2.0: An 

improved particle filtering algorithm for 

simultaneous localization and mapping that provably 

converges. In IJCAI, pages 1151–1156, 2003.  

[11] Stefan Kohlbrecher, Oskar Von Stryk, Johannes 

Meyer, and Uwe Klingauf. A flexible and scalable 

slam system with full 3d motion estimation. In 2011 

IEEE International Symposium on Safety, Security, 

and Rescue Robotics, pages 155–160. IEEE, 2011.  

[12] Kurt Konolige, Giorgio Grisetti, Rainer 

Ku ̈mmerle, Wolfram Burgard, Benson Limketkai, 

and Regis Vincent. Efficient sparse pose adjustment 

for 2d mapping. In 2010 IEEE/RSJ International 

Conference on Intelligent Robots and Systems, pages 

22–29. IEEE, 2010.  

[13] Luca Carlone, Rosario Aragues, Jose  ́ A 

Castellanos, and Basilio Bona. A linear 

approximation for graph-based simultaneous 

localization and mapping. Robotics: Science and 

Systems VII, pages 41–48, 2012.  

[14]BSteuxandOTinySLAMElHamzaoui.Aslamalgor

ithminlessthan 200 lines c-language program. 

Proceedings of the Control Automation Robotics & 

Vision (ICARCV), Singapore, pages 7–10, 2010.  

[15] Wolfgang Hess, Damon Kohler, Holger Rapp, 

and Daniel Andor. Real- time loop closure in 2d lidar 

slam. In 2016 IEEE International Conference on 

Robotics and Automation (ICRA), pages 1271–1278. 

IEEE, 2016.  

[16] Ji Zhang and Sanjiv Singh. Loam: Lidar 

odometry and mapping in real-time. In Robotics: 

Science and Systems, volume 2, page 9, 2014.  

[17] Tixiao Shan and Brendan Englot. Lego-loam: 

Lightweight and ground- optimized lidar odometry 

and mapping on variable terrain. In 2018 IEEE/RSJ 

International Conference on Intelligent Robots and 

Systems (IROS), pages 4758–4765. IEEE, 2018. 

 [18] Jean-Emmanuel Deschaud. Imls-slam: 

scan-to-model matching based on 3d data. In 2018 

IEEE International Conference on Robotics and 

Automation (ICRA), pages 2480–2485. IEEE, 2018. 

 [19] Mikaela Angelina Uy and Gim Hee Lee. 

Pointnetvlad: Deep point cloud based retrieval for 

large-scale place recognition. In Proceedings of the 

IEEE Conference on Computer Vision and Pattern 

Recognition, pages 4470–4479, 2018. 

 [20] Yin Zhou and Oncel Tuzel. Voxelnet: 

End-to-end learning for point cloud based 3d object 

detection. In Proceedings of the IEEE Confer- ence 

on Computer Vision and Pattern Recognition, pages 

4490–4499, 2018.  
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