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Abstract: An accurate fault detection method is 
critical in preventing the integrity of integrated 
navigation system from the abnormal measurements 
which may occur any time. Here, a genetic algorithm 
optimization for deep belief network fault detection 
method is proposed, where the system measuring 
residuals sequence is used as the input, and the output 
is the system operating state, such as normal or fault 
types, in pointwise. The proposed technique extracts 
the features with various scales, which contain both 
the local and the general information of the signal 
sequence, for making a comprehensive and precise 
classification. To show the validity of the proposed 
method, simulations based on INS/GNSS integrated 
navigation system are carried out. The simulation 
results show that the proposed fault detection 
algorithm and method is superior to the existing 
algorithms on the faults detection rate and false alarm 
rate, and thus, system reliability and navigation 
precision have been greatly improved. 
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1 Introduction 

In recent years, using other navigation sensors to 
correct the accumulated navigation solution errors of 
the inertial navigation system (INS) has been widely 
implemented in many navigation applications. The 
increased number of navigation sources can result in 
the two opposite sides of effects on the stability of the 
navigation system. Adding navigation sources 

provides various and accurate measurements as input 
to the navigation filter, thereby improving the 
adaptability of the environment. On the other hand, 
abnormal navigation measurements, i.e. faults, may 
occur any time in any navigation subsystem. Faults 
from any of the subsystems can contaminate the data 
fusion algorithm, which further collapses the entire 
navigation system [1–3]. Thus, fault detection 
methods should be designed and implemented to 
supervise the network for avoiding the serious failures 
of the navigation and equipment. The fault detection 
techniques can be generally divided into two families: 
analytical model-based and data-driven methods. 

Analytical model-based methods exploit a 
relationship between input and output variables for a 
known physical model. The chi-square method is one 
of the most popular analytical model-based fault 
detection methods, which contains hypotheses test for 
state and residual on the basis of statistical 
information and relevant probability statistical 
distributions, respectively [4, 5]. Bedjaoui and Weyer 
[6] presented a method based on the cumulative sum 
algorithm to monitor the model-based residuals. Some 
researchers proposed a modified transformation 
function to make the residual more sensitive to the 
faults and more robust to the noise. Thus, faults 
detection can be more accurate [7]. Analytical 
model-based methods require accurate prior 
information of the system. However, due to the 
non-linear and time-varying characteristics of the 
navigation system, the construction of the motion 
model can hardly be completely accurate. Therefore, 
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the model-based methods have difficulties in 
distinguishing faults in the navigation sources or 
imprecision of the physical model. 

Instead of constructing a physical model, 
data-driven methods operate the fault diagnosis by 
processing the input/output data. In [8], a fault was 
detected by directly monitoring the signals collected 
from the sensors. Some other works are based on the 
residual data from the Kalman filters [9–14]. In these 
works, pattern recognition techniques are often 
referred to make a classification of the data. In [9], a 
belief rule base (BRB) method was used as an 
automatic non-linear model builder that is trained by 
the pre-labelled historic data. In [10, 12], neural 
network was introduced to adjust to the imperfection 
physical model and diagnose the categories of the 
faults. However, like most fuzzy algorithms, BRB 
method greatly relies on the experience of the 
researchers. Similarly, the performance of the NN 
algorithm widely depends on the extracted signal 
features that are the input of the system. Therefore, an 
inappropriate pre-set feature extraction by researchers 
can result in a high false alarm rate and a high missed 
rate. In [14, 15], a deep belief network (DBN) was 
proposed to get rid of the dependence on human 
experience for fault detection. DBN can learn the 
features extracted from the data sequence by itself. 
While, DBN also has disadvantages as it can only 
make classifications for a batch of data stream, i.e. 
determine whether a fault happens or not during a 
period. Thus, the monitoring timeliness cannot be 
guaranteed. 

To overcome the aforementioned shortcomings, it 
is needed to apply a more flexible and reasonable 
approach that is able to autonomously summarize the 
uncertain information of the signal and output 
accurate diagnosis for each sample point of the input 
data sequence. In this paper, a genetic algorithm 
optimization for deep belief network (GA-DBN) fault 
detection method is proposed. Several innovations are 
proposed, such as a new pooling method for obtaining 
both local and general features of the signal, and a 
comprehensive classification method using 
multi-scale feature maps. Moreover, a novel kind of 
convolutional layer help the method obtain a 

classification map in ‘pixelwise’. The method 
proposed in this paper provides a new solution for 
signal detection with prior information uncertainty. 

The paper is structured as follows. Section 2 
introduces the proposed fault detection method 
including the working principle of GA-DBN and the 
structure of the integrated navigation system. In order 
to validate the proposed positioning framework, test 
data were collected; the data acquisition and the test 
data set are presented in Section 3. Section 4 discusses 
the results of the performance analysis of the proposed 
method. Finally, Section 5 summarizes our findings. 

2 Descriptions 

In this section, the traditional DBN is firstly 
described and then the structure of the proposed 
adaptive GA-DBN fault detection with several 
innovations. It improves the diagnostic accuracy and 
generalization ability of the original algorithm, and 
uses the test set to verify, and compares with the 
improved algorithm. 

2.1 Overview of DBN 

Deep belief network (DBN) is a deep learning 
method which combines probability and statistics, 
machine learning and neural network. Its component 
is restricted Boltzmann machine（RBM）. The core of 
DBN is to update and optimize the connection weight 
of DBN by greedy learning method. When deep belief 
network is applied to equipment fault diagnosis, firstly, 
the forward unsupervised layer by layer training is 
used to extract the fault features from the running state 
signals of the equipment to be diagnosed, and then the 
fault recognition ability of deep belief network is 
optimized by the reverse supervised fine tuning. 

Restricted Boltzmann machine is a kind of 
randomly generated neural network, which can 
complete the learning of probability distribution with 
the help of input data. Each RBM contains the visual 
layer and the hidden layer. The neurons in the visual 
layer and the hidden layer are connected in two 
directions, but there is no connection relationship 
between the neurons in the same layer. As shown in 
Figure 1a, RBM can be regarded as an undirected 
graph model with binary structure. The bottom layer 
of RBM is the visible layer unit, which is used to 
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represent the observed data, and n is the number of 
neurons in the visible layer; through the continuous 
abstraction of the input data, the high-level 
characteristics of the signal are obtained, that is, the 
hidden layer unit of RBM, where n represents the 
number of neurons in the hidden layer. In addition, b 
and a represent the offset of the visible layer and the 
hidden layer cells respectively, and the weight matrix 
between the visible layer and the hidden layer is 
represented byω . 

In Figure 1b, DBN achieves greedy learning 
layer by layer by stacking multiple RBMs, which is 
used for signal feature extraction. In this paper, the 
low-level representation is the original data, and the 
high-level representation is the feature representation 
extracted from the original data. The feature extracted 
by each RBM will be used as the original data of the 
next RBM for continuous training. Before reaching 
the maximum number of iterations, the weight and 
threshold in RBM will be maintained to update. DBN 
can get a higher level expression by extracting the 
features of the original data layer by layer, so as to 
mine the hidden essential features and realize the fault 
state recognition. 

 
Fig. 1 Structure of RBM and Deep Belief Network 

2.2 Fault diagnosis flow based on DBN 

In Figure 2, DBN is used to classify and identify 
the faults, and the specific process of integrated 
navigation system fault diagnosis through this model 

mainly includes the following points. 
Firstly, the problem of fault diagnosis and the 

type of fault are defined to determine the number of 
nodes in the output layer of deep belief network. 
Secondly, since the input data range of deep belief 
network is between [0,1], it is necessary to normalize 
the fault data. Since the sensor fault diagnosis will be 
carried out in the future, the vibration signal will have 
positive and negative values alternately, so the linear 
normalization method is selected. 
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Thirdly, the normalized fault data is divided into 
training set and test set for the training and learning of 
deep belief network structure. Fourthly, the parameters 
of the deep belief network are initialized, including 
the number of DBN model layers, the length of input 
samples, the number of nodes in each layer, the 
forward stacking learning rate, the backward 
fine-tuning learning rate, the number of iterations, 
momentum factor, weight matrix, the bias of hidden 
layer cells, and the bias of visible layer cells. Fifthly, 
the training set is used as the input data of deep belief 
network to train it, which mainly includes forward 
stacking learning and backward fine-tuning learning. 
The backward fine-tuning process mainly refers to a 
small amount of label data, and the weight matrix of 
DBN and other parameters are refined by gradient 
descent method. After learning, the diagnosis model is 
obtained. Sixthly, the test set is input into the trained 
deep belief network classification model, and the 
output vectors of each hidden layer are recorded, and 
finally the fault state recognition results are obtained. 
To sum up, the process of fault diagnosis based on 
DBN includes four parts: data preprocessing, forward 
unsupervised training, reverse fine-tuning and fault 
state recognition. 

There are many key parameters in the learning 
process of DBN, which are closely related to the 
performance of the whole DBN model, so the setting 
of parameters is of great significance to the fault 
diagnosis based on DBN, so the reasonable setting of 
parameters can effectively improve the training speed 
and fault recognition rate of DBN. 
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Fig. 2  Fault diagnosis flow based on DBN 

First, the setting of connection weightω : neuron 
bias (visual layer offset b, hidden layer offset a) is the 
first. If the initial value of the connection weight is too 
large, the speed of model training is accelerated, but it 
is not conducive to the classification results of the 
fault. According to experience, the initial value of 
weight is normal distribution in general, which is in 
accordance with N(0,0.01), while offset  b and a of 
visible layer and implied layer can be initialized to 0. 
During DBN training, the connection weight and the 
neuron bias are updated continuously (until the end of 
training), so the initial value will not have a decisive 
effect on the fault diagnosis results. Here, we refer to 
the empirical formula to initialize these three 
parameters randomly. 

=0.1 ( , )
(1, )
(1, )

randn n m
b zeros n
a zeros m

ω ×
 =
 =

                    (2) 

where n is the number of neural units in the input layer, 
m is the number of neural units in the output layer, 
and randn (n, m) generates a pseudo-random number 
matrix of standard normal distribution (i.e. mean value 
is 0 and variance is 1) of n rows and m columns, then 
the connection weightω is a normal distribution with 
mean value of 0 and standard deviation of 0.1. zeros 
(1, n) generates a row of n-column zero matrix (that is, 
all vectors are 0), and zeros (1, m) generates a row of 
m-column zero matrix, that is, the initial value of the 
bias between the view layer and the hidden layer is 0. 

Second, the setting of learning rate (forward 
learning rateε , reverse fine-tuning learning rateα ): 
Random gradient descent algorithm is the key 
algorithm to realize DBN network training, and the 
learning rate is an important parameter of the 
algorithm. The learning rate determines how far the 
gradient direction should move in the process of 
executing the algorithm. If the value of the learning 
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rate is too low, the step toward the minimum value of 
the loss function is small, and the learning will be 
relatively reliable. However, due to the slower update 
speed of the weight, the model can not converge 
quickly, resulting in more time-consuming in the 
whole training process, which seriously affects the 
learning efficiency. On the contrary, if the set learning 
rate is too high, the weight and bias will change more, 
which will easily increase the reconstruction error, and 
even cause the training not to converge. Similarly, 
according to the experience, the learning rate of DBN 
forward stack learning process is generally set to 0.1, 
while the learning rate of BP reverse fine-tuning 
process is generally set to 0.01 

Finally, the setting of momentum factor bm : like 

the learning rate, the momentum factor is also the key 
parameter in the gradient descent method. Its main 
function is to take the gradient estimation of the last 
iteration into account in the algorithm, so as to 
improve the anti oscillation performance of the whole 
training process and make the algorithm converge 
faster and more stable. 
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The above formula is the parameter updating 
formula after introducing momentum factor, where:

ln / lnL θ∂ ∂ represents the gradient of the log 

likelihood function of the current sample, and bm is 

momentum factor and learning rateε . It can be seen 
from the formula that after adding momentum factor 
to the parameter updating process, the parameter 
correction is determined by the gradient value of this 
iteration and the last correction value. Similarly, 
according to experience, the momentum factor is 
generally set to a value in the range of 0.5-0.9, which 
is set to 0.9 in this paper. 

2.3 Implementation of genetic algorithm 

Generally, the network parameters of the DBN 
algorithm are obtained though empirical knowledge or 
experiments, which have certain limitations in 
practical applications. So an improved DBN algorithm 
which can adaptively select parameters is needed to 
achieve the fault diagnosis better. In this manuscript, 
the genetic algorithm is used to optimize the 
hyperparameter of the DBN, which includes the 
number of the input layer nodes, three numbers of the 
hidden layer nodes, learning rate, fine-adjustment 
learning rate and momentum factor. 

Genetic algorithm makes the whole population 
develop in the direction of adapting to the 
environment through multiple iterative evolution 
process. Finally, the individual with the highest degree 
of adaptability to the environment in the population is 
selected as the optimal solution of the whole 
algorithm, and the optimization results are output for 
subsequent use. The algorithm implementation 
process is shown in Figure 3. 

 
Fig. 3 Implementation process of genetic algorithm 

The basic steps of genetic algorithm include the 
following aspects. Firstly, an initial population is 

generated, which is composed of M randomly 
generated individuals. Each individual represents a 
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solution of the problem, which is called chromosome. 
Secondly, according to the actual problem to be 
optimized, the fitness of each individual in the group 
is calculated. Fitness refers to the individual's 
adaptability in the environment, that is, the individual 
can achieve the optimal solution in the actual 
optimization problem. Thirdly, judge the termination 
condition of genetic algorithm. If it is satisfied, the 
optimal solution or the final population will be output. 
Fourth, crossover and mutation operations are 
performed on individuals in the population to generate 
new chromosomes, namely offspring. Fifthly, a certain 
number of individuals are selected to form a new 
population. Then, we need to find the appropriate 
intelligent optimization algorithm to optimize the 
model parameters of deep belief network, so as to 
build the structural optimal deep belief network fault 
diagnosis model, and realize the fault state 
classification of each sensor in the integrated 
navigation system. According to the analysis of the 
optimization problem, this paper mainly chooses 
group optimization algorithm to complete the 
parameter optimization of deep belief network. 
Genetic algorithm has the support of mathematical 
theory, and has the characteristics of universality, 
adaptability and global, so it is very suitable for 
solving discrete problems. Therefore, through 
comprehensive consideration, the genetic algorithm is 
finally selected to solve the parameter optimization 
problem of deep belief network. 

2.4 Structure of integrated navigation system 

To achieve an optimized fusion and a better fault 
tolerance for the integrated navigation systems, a 
non-reset federal Kalman filter (FKF) is utilized for 
the data fusion. In this paper, a integrated navigation 
system consisting of INS and GNSS, is used as an 
example [17–19]. The structure of FKF allows the 
fault detection network to be trained independently for 
each local system and to work parallel. 

The FKF consists of two local filters and one 
main filter. INS is the reference navigation system. In 
the local filters, GNSS assist the reference system 

with navigation observations. The local estimates ˆ
iX

and the local covariance matrixes iP  are sent to the 

main filter for obtaining a global optimal estimation

ˆ
gX and update the global covariance matrix gP . Note 

that, navigation observations output from GNSS 
system is position. The detail of implemented FKF is 
presented in the Appendix. 

In a local filter, as described in the Appendix, 
after the prediction state vector 1/ˆk kx + is obtained 
according to (11), the following equation can be used 
to calculate the observations prediction at time k+1: 

1/ 1/ˆ ˆk k k k ky H x+ +=                           (4) 

Then, the filter residual can be defined as the 
difference between the observation 1ky +  and its 
prediction 1/ˆk ky + which can be expressed by 

1 1 1/ˆr =y -k k k ky+ + +                            (5) 

The residual is an important measure of how well 
the estimator is performing, as it is a zero-mean 
Gaussian white-noise process, and once a fault occurs, 
the characteristics of the distribution are very likely to 
change. In this paper, the fault detection is 
implemented by monitoring the residual. Residual is 
calculated with every observation update, and is 
stored consecutively to a predefined length l. Then, 
the residual data stream is input to the GA-DBN fault 
detection module. The proposed GA-DBN fault 
detection function can be defined as (see (6)) where

k iS +  is the output of the GA-DBN, which is the 
scores for categories of each residual timing. k iS + is a 
vector of length equal to the number of categories. 
The category with the highest score is output as the 
final diagnosis result at time i, denoted as k id + , 
which indicates different system states, such as 
working properly, observation error surge, INS drift 
error surge etc. 
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Since input of GA-DBN is a residual array 
collected over a period of time, faults can be spread to 
the main filter by contaminated INS fixing error 
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during the period between fault occurrence and being 
detected, and then to the other normal operating local 
filter. To isolate the fault and eliminate the 
contamination of the main filter and local filters, data 
from filters, including states, covariance matrixes, and 
observation updates, are stored for backup, until fault 
detection modules assure that no faults have been 
detected during the time. Once a fault has been 
detected, all the filters are reset to the moment before 
the occurrence of it, and conduct re-estimation 
without the fault navigation source. 

3 Simulation test set-up 

In order to examine the performance of the 
proposed fault detection method, a simulation test was 
conducted. The simulation test was used to illustrate 
the performance of detecting faults under massive 
samples. While, simulation test showed the influence 
of fault detection methods on trajectory solution. 

In the simulation test, to obtain the training and 
validation data for the neural network, INS, GNSS 
output data within several kinds of faults is generated 
in accordance with a total of 1000 pre-established 
trajectories, including various manoeuvring conditions, 
such as uniform motion, acceleration, deacceleration, 
climbing, descending, S curve, and Eight curve path. 
Detailed specifications of simulated navigation source 
are shown in Table 1. 

Table 2 presents detailed information of 
generated various kinds of faults. Different kinds of 
faults are set artificially into observations from 

different navigation sources according to the error 
value and lasting time in the table. Backpropagation 
method is used in this paper to train the network, 
which adjusts the weight of each neuron by 
calculating the gradient of the loss function [20]. In 
the training and validation data set, residuals of the 
local filters are labelled in pointwise with normal or 
specific fault category, and truncated to sequences 
with a fixed length. GA-DBN are trained for 
INS/GNSS, respectively. Consequently, the training 
set of each GA-DBN is consisted of 4700 sequences 
and another 300 sequences are generated as a 
validation set. Note, as the performance reflecting on 
residuals of gradually increasing position error and 
INS constant drift surge is similar, the above two 
kinds of faults are both labelled as gradual faults. In 
practice, during the detection process, if gradual fault 
has been detected from both local filters at the same 
time, it is determined as INS fault. In the simulation 
test, the DBN method and CNN method [15] is 
utilized as comparisons. And the maximal number of 
iterations is set as 20. 

Table 1 Simulation specifications for INS/GNSS 
integrated navigation system 

 
Accelero- 

meter 
Gyro GNSS 

output 
frequency 

100 Hz 100 Hz 1 Hz 

error 
100μgal  
(bias) 

0.5°/h  
(bias) 

3 m 
(position) 

Table 2  Details of faults 

 Outliers 
Positioning 
error surge 

Positioning error 
Increasing gradually 

Gyro, accelerometer 
drift error surge 

source GNSS GNSS GNSS INS 
mode sudden sudden gradual gradual 

error 10–20 m 10–20 m 0.5–10 m/s 
gyro bias: 3–10°/h;  

accel. bias: 500–2000 μgal 
lasting 
time 

one or two 
samples 

>10 s >10 s >20 s 

Fault 
cause 

Signal blocking, 
Weak satellites 
nodes signal 

etc. 

Ionospheric scintillation in 
GNSS, Deterioration of the 

geometry, 
Signal interference 

etc. 

Multipath signal, 
Deception jamming 

etc 

Abnormal vibration, 
temperature, 

electromagnetic 
interference etc. 
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In the simulation test, the car is used to carry 
GNSS antenna and a MEMS IMU. All sensors are 
synchronized to the GPS time via PPS (pulse per 
second) signals. The GNSS output frequency is 1 Hz. 
The specifications of the IMU are shown in Table 3. 

Table 3 Specification for the MEMS IMU system 
 Accelerometer Gyro 

output frequency 100 Hz 100 Hz 

bias error (in-run) 40 μgal 0.5 °/h 

bias error (initial) 2 mgal 0.25 °/s 

scale factor stability 0.05% 0.05% 

4 Results and discussion 

In this section, the training performance of 
GA-DBN using simulation data is firstly introduced. 
Then, the performances of several fault detection 
methods are presented and compared. Finally, we 
compare and analyze the results. 

In general, the validation set is studied by the NN 
during the training process, and it is employed to 
evaluate the performance of training. Fig. 4 
demonstrates four typical fault detection results in the 
validation set from GNSS/INS system. The upper side 
of every subfigure presents one of the three position 
residual vectors that input to the GA-DBN algorithm. 
The lower side of subfigure present different 
categories. 

In Fig. 4a, position residuals in X direction 
fluctuate within 3 m, and then, outliers with 5 m error 
occur around the 60 s. In this case, scores indicating 
outliers are output with values close to 1 during the 
fault, while scores for normal state drop deeply 
correspondingly. Fig. 4b shows another example, 
when position solution accuracy from GNSS degraded 
and lasted for over 15 s. As the fault appearances of 
outliers and error surge are similar, scores from both 
categories increase; however, because of a long fault 
duration time, scores for error surge maintain higher. 
In the case of Fig. 4c, a gradual fault from GNSS 
occurs at the 22 s and lasts for >20 s. Although scores 
of gradual faults increase at the beginning of the fault, 
however, since the residual error is not obvious during 

the first a few seconds, scores of normal state 
maintains even higher values. The fault has not been 
detected until 7 s after it occurred. The above delayed 
fault detection results are found in some other gradual 
faults cases. Fig. 4d shows another example of the 
gradual fault, which is caused by a sudden increased 
accelerometer drift error, in this case, the fault has 
been detected at the beginning. 

Table 4 presents the fault detection performance 
of the GA-DBN, DBN method, and CNN for the 
simulated validation set. The table distinguishes four 
cases. The ‘Success detection rate’ row presents those 
results when the output of GA-DBN is same as the 
ground truth. The missed faults are presented in the 
second row titled as ‘Misdetection rate’. In these cases, 
faults are all classified into normal class. The 
‘Misdiagnosed rate’ row indicates those faults that 
have been detected but classified as incorrect fault 
class. In some other cases, normal residuals are 
identified as faults. These cases are presented in the 
‘False alarm rate’ row. As the chi-square method 
cannot distinguish types of the fault, the 
‘Misdiagnosed rate’ and ‘False alarm rate’ except for 
the ‘total’ have been missing. 

The table clearly shows the proposed GA-DBN 
approach achieves better detection rates. Especially 
for the fault type of gradual, the detection rate is 
significantly higher. The result shows that 92.6% of 
the artificially generated faults can be detected with 
correct fault type by the proposed GA-DBN, while for 
the DBN method only 74.5% can be detected, yet, 
without the specific fault type. CNN can detect 81.6% 
of the faults. However, the method can only classify a 
whole piece of data; therefore, an outlier will cause 
the whole time to be judged as faults, which resulting 
in a higher false alarm rate of 2.7%. 

In additional, 95.6% of the outliers and 94.6% of 
the positioning error surge fault can be detected 
correctly by GA-DBN, which is higher than the 
gradual faults. The reason leading to a higher 
detection rate of the sudden faults is that the impact of 
the residuals brought by gradual fault at the beginning 
stage is very weak, and thus, is hard to detect and will 
do minor contamination to the navigation filters. 
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Fig. 4 Trained GA-DBN detecting faults as (a) Outliers, (b) Positioning error surge, (c) Positioning error 

increasing gradually, and (d)Accelerometer constant drift error surge in GNSS/INS system 

 
Fig. 5  Test set detection error of three models

Table 4  Fault detection results for simulation dataset 
 Outliers Positioning error surge Gradual faults 

rate 
GA-DBN 

% 
DBN 

% 
CNN 

% 
GA-DBN 

% 
DBN 
% 

CNN 
% 

GA-DBN 
% 

DBN 
% 

CNN 
% 

Success 
detection 

95.6 93 82 94.6 75.2 87.4 92.6 74.5 81.6 

misdetection 4.4 7 9 1.6 24.8 8.4 5.5 25.8 15.9 

misdiagnosed 0.0 / 9 3.8 / 4.2 2.3 / 2.5 

false alarm 0.210 / 2.7 0.13 / 1.3 0 / 1.1 
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In order to verify the efficiency of the proposed 
algorithm, we also give the training time of these three 
algorithms. We have analyzed the relationship 
between the sample length and the fault identification 
rate of this training set and we know that: when the 
sample length is less than 400, the fault identification 
rate increases with the sample length’s increase; while 
when the sample length is large than 400, the fault 
identification rate no longer increases but stabilizes to 
a certain position with the continuously increasing 
training time. Therefore, in order to facilitate the code 
running, we only used 400 samples when comparing 
the training time. And the comparison of the training 
time is shown in Table 5.  

Table 5 Comparison of the training time 

 GA-DBN DBN CNN 

Training 
Time (s) 

0.76 0.55 1.32 

 
    From Table 5, we can see that the training time of 
the DBN algorithm is the least while the one of the 
CNN algorithm is the most, and the one of the 
proposed algorithm is the middle, 0.76s. That’s 
because the convolution calculations is involved in the 
CNN algorithm, its training time is the longest. And 
the optimization method based on GA is added in 
GA-DBN algorithm, improving the accuracy at the 
cost of a certain amount of the computing time. So the 
training time of GA-DBN algorithm is more than the 
one of the traditional DBN algorithm.  

5 Conclusions 

In this paper, we propose a modified DBN 
method, which is denoted as GA-DBN, to improve the 
fault detection performance in integrated navigation 
systems. To test the performance of the proposed 
method, DBN method and CNN are compared. In the 
simulation test, 1000 platform trajectories and 4 kinds 
of faults are generated to train and validate the 
network. The results indicate that 92.6% of the faults 
can be detected and diagnosed correctly by using the 
proposed GA-DBN. The detection rate of GA-DBN is 
18.1% and 11% higher than the DBN and CNN 
methods, respectively. Therefore, the proposed fault 

detection method is superior to the existing algorithms 
on the faults detection rate and false alarm rate, and 
thus, system reliability and navigation precision have 
been greatly improved. In the future, two research 
directions will be explored. First, we plan to further 
test the proposed system under various scenarios and 
different navigation sources. Second, in order to 
increase the fault detection rate, instead of relaying the 
self-learning neural network, feature maps, extracted 
by formulas or models, can be used to aid the 
classification process, which may improve the 
efficiency of training. 
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7 Appendix 

7.1 Federal Kalman filter 

7.1.1 Local filter: A 15-state Kalman filter is 
implemented in ENU frame as local filter. The state 
vector of the filter is 
 

[ ]T T T T Tx pδ δν δθ δα δω=       (7) 

where the first nine states, denoted with pδ ,δν , and

https://robomow.ion.org/pnt/
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δθ are the position, velocity, and attitude errors 
defined in the ENU frame. The last six states, denoted 
byδα andδω , are the accelerometer and gyroscope 
bias errors. 
    Kalman filter consists of two steps; a prediction 
step and an update step. In the prediction process, the 
state and variance at time k+1 are estimated dependent 
on information at time k: 

1/ˆ ˆk k k k k kx F x G u+ = +                       (8) 

1/
T

k k k k k kP F P F Q+ = +                      (9) 

where kF  is the state transition matrix, kP  and 

1/k kP +  are the covariance matrix and the predicted 

covariance matrix, respectively, and kQ is the 

covariance matrix of the process noise. 

The update process is also known as measurement 
update. This updates the state and variance using a 
combination of the predicted state and the observation

1ky + at time k+1, such that 
1

1 1/ 1 1 1/ 1/ 1( )T T
k k k k k k k k k kK P H H P H R −
+ + + + + + += +    (10) 

1 1/ 1 1 1 1/ˆ ˆ ˆ( )k k k k k k k kx x K y H x+ + + + + += + −          (11) 

1 1 1 1/ 1 1 1 1 1( ) ( )T T
k k k k k k k k k kP I K H P I K H K R K+ + + + + + + + += − − +          

(12) 
where 1kK + is the Kalman gain, 1kH + the measurement 
matrices, 1kR + the measurement covariance matrices, 
and I the identity matrix. 

In this paper, the state predictions are applied at 
each IMU observation, and GNSS and UWB systems 
provide the updates for two local Kalman filters, 
respectively. Both coordinate solutions from GNSS 
and UWB are transformed into the ENU frame, and 

are denoted as kp . Thus, the measurement vectors for 

the local error-state Kalman filters are defined as 

( ) ( ) ( )k GNSS k INS k GNSSy p p= −                (13) 

( ) ( ) ( )k UWB k INS k UWBy p p= −                 (14) 

As position updates are provided in both local filters, 
the measurement matrices are 

(3 3) (3 12)
( ) ( ) [ 0 ]k GNSS k UWBH H I × ×

= =      (15) 

where 0 is zero matrices. It is worth noting that the
( )k GNSSR and ( )k UWBR measurement covariance 
matrices are defined based on the sensor 
specifications. 

7.1.2 Global filter: Local optimal estimate 1ˆ( )k lx + and 

local optimal covariance 1( )k lP +  from local filters are 

sent to the global filter. Global optimal estimate

1ˆ( )k gx + and global optimal covariance 1( )k gP + are 

achieved by applying information fusion technique 
shown as follows: 

1 1
1 1

1
( ) ( )

N

k g k l
l

P P− −
+ +

=

=∑                  (16) 

1
1 1 1 1

1

ˆ ˆ( ) ( ) ( ) ( )
N

k g k g k l k l
l

x P P x−
+ + + +

=

= ⋅∑             (17) 

where N is the number of local filters, l represents the 
l th local filter, and g means the global filter. 
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