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Abstract: This paper discusses the performance 
assessment of the generalized DIA estimators. Based 
on the unifying framework of the DIA estimators 
introduced by Teuniseen (2018), quality control 
indices from three aspects are discussed and 
formulated, to measure the confidence levels of the 
testing decisions, to evaluate the reliability of the 
specified alternative hypothesis models, as well as to 
compute the biasedness, dispersion and integrity of 
the estimated parameters under an unconditional case, 
by taking the uncertainty of the combined 
estimation-testing procedure into account and 
performing the propagation of uncertainty 
accordingly. With a dual-constellation GNSS 
single-point positioning example, the quality control 
evaluation of and comparisons among three 
conventional used DIA estimators are demonstrated 
for practical applications. 

Keywords: Detection, Identification and Adaption 
(DIA); Hypothesis Model; Stochastical Testing; 
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1 Introduction 

Least-squares (LS) estimations, typically applied for 
geodetic data processing, can only achieve 
unbiasedness and minimum variance when realistic 
functional and stochastic models are used [Koch 1999; 
Teunissen 2006; Li et al. 2011]. Outliers generally 
result in LS estimators that are biased. The DIA 
method for the detection, identification and adaptation 

of functional model misspecifications, together with 
its associated internal and external reliability measures, 
finds its origin in the pioneering work of Baarda [1967, 
1968], see also, e.g., Alberda [1976], Kok [1984], 
Teunissen [1985]. A unifying framework that captures 
the combined estimation and testing scheme of the 
DIA estimator has recently been introduced by 
Teunissen [2018].  

The DIA estimator firstly makes hypothesis 
testing between the original/null and a group of 
alternative hypothesis models. By testing statistics that 
follow normal distribution, τ distribution, χ2 
distribution, F distribution or others [Pope 1976; Koch 
2015; Kok 1984; Xu 1987; Lehmann 2013], the most 
trustworthy model is selected and is considered to 
exclude any unmodelled misspecifications. Then, 
estimation is further conducted under the identified 
model aiming to remove the potential bias on the 
unknown parameters. Theoretically, the bias on the 
unknown parameters can only be completely removed 
once the hypothesis testing successfully selects the 
model that can realistically compensate the 
unmodelled misspecifications. However, missed 
detection, false alarm and wrong identification, 
usually cannot be avoided due to the geometry of the 
observation model [Hekimoglu and Berber 2003; 
Wieser 2004], the separability among hypothesis 
models [Yang et al. 2013, 2017], the selected test 
statistics [Leick and Emmons 1994; Koch 2015] and 
the predetermined critical values for testing [Lehmann 
2012]. These incorrect decisions would still introduce 
biases on the final parameter estimation. It implies 
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that the DIA method has to take the contributions of 
the various decisions and estimators into consideration. 
The consequence of this practice is that the DIA 
estimator is neither estimation only, nor testing only, 
but one where estimation and testing are combined 
[Teunissen 2018].  

Since incorrect testing decisions and biases on 
estimated parameters cannot be completely avoided 
via a DIA estimator, the reliability analysis has 
become a fundamental part of the procedure, which 
gives a measure for the ability of an estimator to 
successfully detect the misspecification and to resist 
the bias on parameter estimation if the 
misspecification is failed to detect. The internal 
reliability is usually measured by the Minimal 
Detectable Bias (MDB). MDB describes the minimal 
size of model misspecification or bias specified by an 
alternative hypothesis that can be detected with a 
certain preset probability, when employing a DIA test 
with user-defined false alarm rate. Theoretically, the 
MDBs measure the capability of correct detection 
rather than correct identification. For a multiple 
alternative hypotheses case, concepts of Minimal 
Separable Bias (MSB) or Minimal Identifiable Bias 
(MIB) have been further investigated and defined to 
measure the minimal bias sizes that can be 
successfully separated with another alternative 
hypothesis or can be correctly identified among 
multiple alternative hypotheses, with a certain preset 
probability [Förstner 1983; Yang et al. 2013, 2017]. 
External reliability is accordingly obtained by 
substitution of the MDB into the parameter solution 
[Wang and Chen 1999; Ryan and Lachapelle 2001], 
aiming to measure the significance of the influence on 
the parameter estimation caused by the undetected 
misspecification. Besides, other related measures of 
reliability, including reliability numbers [Pelzer 1980; 
Wang and Chen 1994; Chen and Wang 1996; 
Schaffrin 1997; Ou 1999] and controllability [Pelzer 
1980; Förstner 1985], have also been generalized for 
single and multiple outliers. Generally, these indices 
mainly work to qualitatively describe the ability of 
successfully detect a specific misspecification against 
to the null hypothesis in a binary case, when next to 
the null hypothesis only a single alternative hypothesis 

is considered.  
In the safety-critical navigation application of 

aviation, Receiver Autonomous Integrity Monitoring 
(RAIM) was specifically developed to safeguard the 
navigation integrity by means of self-contained fault 
detection at the GNSS navigation receiver [Lee 1986; 
Parkinson and Axelrad 1988]. Theoretically, RAIM 
commonly uses a specified DIA estimator relying on 
statistical hypothesis testing on the positioning 
domain. In RAIM without fault exclusion, only the 
null hypothesis is conducted, and therefore the 
Gaussian distributional properties of the estimator can 
directly be used to compute the probability of 
hazardous misleading information (PHMI) and to 
determine the protect levels (PLs). However, when 
exclusion is included in real-time navigation 
application, the DIA estimator for positioning is 
actually dealing with a combination of multiple 
estimators, one for each hypothesis model specified. 
Therefore, the integrity evaluation has to take the 
uncertainty of the combined estimation-testing 
procedure into account and perform the propagation of 
uncertainty accordingly [Teunissen et al. 2017].  

Various reliability and integrity indices have been 
defined and investigated under a conditional case 
when one single hypothesis is considered. However, 
aiming to evaluate the overall performance of a DIA 
estimator with a group of specified hypothesis models 
for quality control purpose, the uncertainty of the 
estimated parameters produced from the combined 
estimation-testing procedure should be stochastically 
considered. In this paper, the overall performances of 
conventional used DIA estimators are evaluated via 
three groups of indices, which are, (1) the confidence 
levels of the testing decisions; (2) the reliability of the 
hypothesis models; (3) the biasedness, dispersion, and 
integrity of the estimated parameters. The rest of this 
paper is organized as follows. Section 2 briefly 
reviews the generalized Detection, Identification and 
Adaption (DIA) methods and principles proposed by 
Teunissen [2018]. Section 3 presents the three groups 
of quality control indices of a DIA estimator. Section 
4 gives numerical examples of a dual-constellation 
GNSS Single Point Positioning (SPP) to demonstrate 
the quality control of and comparison among three 
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conventional DIA methods. Section 5 presents the 
conclusions of this study. 

2 DIA theory 

In this section, the Detection, Identification and 
Adaption (DIA) methods and principles introduced in 
Teunissen [2018] are reviewed.  

The DIA methods rely on making decision 
among a null and a set of alternative hypotheses ℋ0 
an ℋ𝑖𝑖 , respectively. The null hypothesis that one 
believes to be valid under normal working conditions 
is usually formed as  
 ℋ0: 𝐸𝐸(𝒚𝒚) = 𝑨𝑨𝑨𝑨 and 𝐷𝐷(𝒚𝒚) = 𝜮𝜮𝑦𝑦𝑦𝑦 (1) 
Where 𝐸𝐸(∙)  and 𝐷𝐷(∙)  are the expectation and 
dispersion operator, respectively, 𝒚𝒚 ∈ ℝ𝑚  is the 
vector of observables with normally distributed 
random errors, 𝑨𝑨 ∈ ℝ𝑚×𝑛𝑛 is the given design matrix 
of rank n, 𝑨𝑨 ∈ ℝ𝑛𝑛 is the to-be-estimated unknown 
parameter vector, 𝜮𝜮𝑦𝑦𝑦𝑦 is the given positive-definite 
variance matrix of 𝒚𝒚.  

Assuming a misspecification confined to the 
functional model, the alternative hypothesis can be 
formed as  
 ℋ𝑖𝑖: 𝐸𝐸(𝒚𝒚) = 𝑨𝑨𝑨𝑨 + 𝑪𝑪𝑖𝑖𝒃𝒃𝑖𝑖 and 𝐷𝐷(𝒚𝒚) = 𝜮𝜮𝑦𝑦𝑦𝑦 (2) 
where 𝒃𝒃𝑖𝑖 ∈ ℝ𝑞𝑞 is a vector of nonrandom parameters 
denoting a specific fault type that impacts the mean of 
y, via a matrix 𝑪𝑪𝑖𝑖 ∈ ℝ𝑚×𝑞𝑞. Through 𝑪𝑪𝑖𝑖𝒃𝒃𝑖𝑖, one may 
model, for instance, the presence of one or more fault 
(outliers) in the data, cycle slips in GNSS phase data, 
satellite failures, antenna-height errors, erroneous 
neglect of atmospheric delays, or any other systematic 
effect that one failed to take into account.  

Since one cannot specify the design matrix 𝑪𝑪𝑖𝑖 
beforehand, multiple alternative models in parallel 
should be set up with different 𝑪𝑪𝑖𝑖  (𝑖𝑖 = 1,⋯ ,𝑁𝑁) . 
Accordingly, the DIA testing procedure needs to be 
devised for handling multiple alternative hypotheses, 
and therefore usually consists of the following three 
steps of detection, identification and adaption [Baarda 
1968; Lehmann 2014; Teunissen 2018].  

In the detection step, a global test on ℋ0  is 
performed to diagnose whether an unspecified model 
fault has occurred. Conventionally, the global test 
statistic is formed as 

 𝑇𝑇0 = ‖𝒗0‖𝜮𝜮𝑦𝑦
2  (3) 

Where ‖∙‖𝑴𝑴2 = (∙)T𝑴𝑴−1(∙)  is the notation for a 
weighted squared norm. Under null hypothesis ℋ0, 
one can deduce that 𝑇𝑇0  follows a centralized 
Chi-square distribution T0~𝜒𝜒2(𝑟𝑟, 0) , therefore, ℋ0 
can be accepted with  
 𝒫𝒫0 = �𝑇𝑇0 ≤ 𝑐𝑐𝜒𝜒2(1− 𝛼𝛼0, 𝑟𝑟)� (4) 
Where 𝑐𝑐𝜒𝜒2 denote the corresponding critical value of 
Chi-square distribution relying on the probability of 
false alarm 𝛼𝛼0 and the degree of freedom 𝑟𝑟. Once 
ℋ0 has been accepted, least-squares (LS) estimation 
under model (1) is provided as the best linear unbiased 
estimate (BLUE) of x.  

If ℋ0  has been rejected, an identification 
procedure should be further executed by searching 
among the specified alternative hypotheses, 
ℋ𝑖𝑖 , (𝑖𝑖 = 1,⋯ ,𝑁𝑁) with a set of parallel local tests, for 
the most likely model misspecification. The local test 
statistic for ℋ𝑖𝑖 is usually formed as  

 𝑇𝑇𝑖𝑖 = �𝒃𝒃�𝑖𝑖�𝜮𝜮𝑏𝑏�𝑖𝑖𝑏𝑏�𝑖𝑖
 (5) 

Where 𝒃𝒃�𝑖𝑖  and 𝜮𝜮𝑏𝑏�𝑖𝑖𝑏𝑏�𝑖𝑖  are the LS estimation of 
misspecification parameter 𝒃𝒃𝑖𝑖 under model (2). If the 
misspecification is significant, it can be deduced that 
𝑇𝑇𝑖𝑖  follows a noncentralized Chi-square distribution 

𝑇𝑇𝑖𝑖~𝜒𝜒2�𝑞𝑞, 𝜆𝜆𝑖𝑖2� , with 𝜆𝜆𝑖𝑖2 = ‖𝒃𝒃𝑖𝑖‖𝜮𝜮𝑏𝑏�𝑖𝑖𝑏𝑏�𝑖𝑖
2  [Koch 1999; 

Teunissen 2018; Yang and Shen 2020]. Therefore, ℋ𝑖𝑖 
can be accepted with 
 𝒫𝒫𝑖𝑖 = �𝑇𝑇𝑖𝑖 > 𝑐𝑐𝜒𝜒2(1− 𝛼𝛼0,𝑞𝑞)� (6) 

However, for practical applications, identification 
usually involves making decision among multiple 
alternative hypotheses after conducting detection, 
therefore a complex region is usually defined for the 
acceptance of ℋ𝑖𝑖 as 

 𝒫𝒫𝑖𝑖≠0 = �𝑇𝑇𝑖𝑖 = 𝑚𝑑𝑑𝑥
𝑖𝑖∈{1,⋯,𝑁𝑁}

𝑇𝑇𝑖𝑖2� , 𝑖𝑖 = 1,⋯ ,𝑁𝑁 (7) 

After identification of the suspected 
misspecification, the accepted hypothesis ℋ𝑖𝑖 would 
become the new null hypothesis. Either a direct 
solution under model (2) or a correction on the 
ℋ0-based solution under model (1) is adopted.  
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3 Discussion on quality control of the generalized 
DIA estimators 

3.1 Three groups of quality control indices for DIA 
estimators 

It is considered that the biases of the LS estimation of 
𝒙𝒙 caused by outliers can be controlled by above DIA 
procedure. However, the BLUE-property intrinsically 
lose due to the combination of estimation and testing. 
Therefore, quality control of the DIA estimators is 
essential. Proposed by Yang et al. [2021], quality 
control of DIA estimators can generally be conducted 
by indices from three aspects: 1) Confidence levels of 
the hypothesis testing decisions; 2) Reliability of the 
alternative hypothesis models; 3) Biasedness, 
dispersion, and integrity of the estimated parameters. 
In this subsection, we will discuss the main factors 
that impact these indices. 

3.1.1 Confidence levels of the hypothesis testing 
decisions 

The confidence levels of the hypothesis testing 
decisions are measured by the probabilities of 
different testing decisions, including Correct 
Acceptance (CA) and False Alarm (FA) under null 
hypothesis, and Missed Detection (MD), Correct 
Detection (CD), Correct Identification (CI), and 
Wrong Identification (WI) under a specific alternative 
hypothesis ℋ𝑖𝑖. For simplification, the probabilities of 
these decisions can be put into a probability matrix as 

 𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑃𝑃�𝑇𝑇𝑖𝑖 ∈ 𝒫𝒫𝑖𝑖|ℋ𝑖𝑖�, 𝑖𝑖, 𝑗𝑗 = 0,1,⋯ ,𝑁𝑁 (8) 
Where indicator i and j denote the unknown reality 
and the testing decision, respectively. It satisfies 
∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗=0 = 1,∀𝑖𝑖 . Computing such probabilities 

requires information about probability density 
function (PDF) of the test statistics 𝑇𝑇𝑖𝑖, and depends 
on the complexity of the acceptance regions for each 
of these events [Teunissen 2018]. Usually, numerical 
evaluation methods via Monte Carlo simulation are 
applied [Yang et al. 2013, 2017, 2021; Zaminpardaz 
and Teunissen 2019]. 

Among above testing decisions, the wrong 
identification is the severest incorrect decision, since 
biases on the estimated parameters would be further 
enlarged by weaker geometric strength. According to 

the definitions of Eq. (7), wrong identification will be 
triggered when  

 𝒫𝒫𝑖𝑖≠0,𝑖𝑖 = �𝑇𝑇𝑖𝑖≠0,𝑖𝑖
2 = 𝑚𝑑𝑑𝑥

𝑠∈{1,⋯,𝑁𝑁}
𝑇𝑇𝑠2 |ℋ𝑖𝑖� (9) 

Derived from Eq. (5), the test statistic for ℋ𝑗𝑗≠0,𝑖𝑖 
when ℋ𝑖𝑖 holds true follows  

 𝑇𝑇𝑖𝑖≠0,𝑖𝑖|ℋ𝑖𝑖 = �𝒃𝒃�𝑖𝑖�𝜮𝜮𝑏𝑏�𝑗𝑗𝑏𝑏�𝑗𝑗
~𝜒𝜒2�𝑞𝑞, 𝜆𝜆𝑖𝑖𝑖𝑖2 � (10) 

with the noncentrality parameter 𝜆𝜆𝑖𝑖𝑖𝑖2  satisfying 

 𝜆𝜆𝑖𝑖𝑖𝑖2 = ��𝜮𝜮𝑏𝑏�𝑗𝑗𝑏𝑏�𝑖𝑖𝜮𝜮𝑏𝑏�𝑖𝑖𝑏𝑏�𝑖𝑖
−1 𝒃𝒃𝑖𝑖�

𝜮𝜮𝑏𝑏�𝑗𝑗𝑏𝑏�𝑗𝑗
�
2

 (11) 

and the covariance 𝜮𝜮𝑏𝑏�𝑗𝑗𝑏𝑏�𝑖𝑖 being 

 𝜮𝜮𝑏𝑏�𝑗𝑗𝑏𝑏�𝑖𝑖 = 𝜮𝜮𝑏𝑏�𝑗𝑗𝑏𝑏�𝑗𝑗𝑪𝑪𝑖𝑖
𝑇𝜮𝜮𝑦𝑦𝑦𝑦−1𝑷𝑷𝑨𝑨0

⊥ 𝑪𝑪𝑖𝑖𝜮𝜮𝑏𝑏�𝑖𝑖𝑏𝑏�𝑖𝑖 (12) 

with  

 
𝑷𝑷𝑨𝑨0
⊥ = 𝑰𝑚 − 𝑷𝑷𝑨𝑨0, 𝑷𝑷𝑨𝑨0 = 𝑨𝑨𝑨𝑨0+, 𝑨𝑨0+ =

�𝑨𝑨𝑇𝜮𝜮𝑦𝑦𝑦𝑦−1𝑨𝑨�
−1𝑨𝑨𝑇𝜮𝜮𝑦𝑦𝑦𝑦−1 

(13) 

Defining the general correlation coefficient 𝜌𝜌𝑖𝑖𝑖𝑖 
satisfying 
 𝜌𝜌𝑖𝑖𝑖𝑖2 = 𝜆𝜆𝑖𝑖𝑖𝑖2 𝜆𝜆𝑖𝑖2⁄  (14) 

It is easy to prove that  

 0 < 𝜌𝜌𝑖𝑖𝑖𝑖2 < 1 (15) 
Therefore, we can conclude that larger 𝜌𝜌𝑖𝑖𝑖𝑖2  indicates a 
larger 𝑃𝑃WI𝑖𝑖𝑖𝑖 , and accordingly a larger discrepancy 
between 𝑃𝑃CD𝑖𝑖 and 𝑃𝑃CI𝑖𝑖.  

3.1.2 Reliability of the alternative hypothesis 
models 

For a specified alternative hypothesis model, larger 𝒃𝒃𝑖𝑖 
will be correctly detected and identified with higher 
probabilities. With an identical probability threshold, 
the size of 𝒃𝒃𝑖𝑖 will vary among multiple alternative 
hypothesis models, as well as the corresponding 
influences on the parameter estimations are also 
diverse. Therefore, the reliability indices are defined 
to measure the significance discrepancies between 
each alternative hypothesis models and the null 
hypothesis models, or between any two alternative 
hypotheses, with the internal reliability describing the 
significance of 𝒃𝒃𝑖𝑖, and external reliability describing 
the significance of the biases on the estimated 
parameters caused by 𝒃𝒃𝑖𝑖. 
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There are several parameters are defined to 
describe the internal reliability of an alternative 
hypothesis models, including Minimal Detectable 
Bias (MDB), Minimal Identifiable Bias (MIB), and 
Minimal Separable Bias (MSB). 

The MDB of an alternative hypothesis ℋ𝑖𝑖  is 
defined as the (in absolute value) smallest bias that 
leads to rejection of ℋ0 for a given CD probability 
[Teunissen 2018]. For the 𝒫𝒫0 given in Eq. (4), the 
MDB of ℋ𝑖𝑖 can be computed from ‘inverting’ 
 𝑃𝑃�𝑇𝑇02 > 𝑐𝑐𝜒𝜒2(1− 𝛼𝛼0, 𝑟𝑟)|ℋ𝑖𝑖� = 𝛾𝛾𝐶𝐶𝐷 (16) 
using the fact that under ℋ𝑖𝑖 , 𝑇𝑇02~𝜒𝜒2�𝑟𝑟, 𝜆𝜆𝑖𝑖2�  with 

𝜆𝜆𝑖𝑖2 = ‖𝒃𝒃𝑖𝑖‖𝜮𝜮𝑏𝑏�𝑖𝑖𝑏𝑏�𝑖𝑖
2 . Then the MDB of ℋ𝑖𝑖  can be 

resolved as  

 𝑃𝑃𝐷𝐷𝐵(𝒃𝒃𝑖𝑖) =
𝜆𝜆0(𝛼𝛼0,𝛾𝛾𝐶𝐶𝐷 , 𝑟𝑟)

�𝒅𝑇𝜮𝜮𝑏𝑏�𝑖𝑖𝑏𝑏�𝑖𝑖
−1 𝒅

𝒅 (17) 

where 𝒅 ∈ ℝ𝑞𝑞 is a unit vector, and 𝜆𝜆02(𝛼𝛼0, 𝛾𝛾CD, 𝑟𝑟) is 
the noncentrality parameter that captures the 
dependency on the 𝛼𝛼0, 𝑟𝑟 and 𝛾𝛾CD derived from Eq. 
(16). 

Similarly, if only single alternative hypothesis 
ℋ1 is concerned, with the acceptance region for ℋ0 
and ℋ1 given in Eq. (6), the MDB of ℋ1 can be 
computed by  

 𝑃𝑃𝐷𝐷𝐵(𝒃𝒃1) =
𝜆𝜆0(𝛼𝛼0,𝛾𝛾𝐶𝐶𝐷 ,𝑞𝑞)

�𝒅𝑇𝜮𝜮𝑏𝑏�𝑖𝑖𝑏𝑏�𝑖𝑖
−1 𝒅

𝒅 (18) 

where 𝜆𝜆0(𝛼𝛼0, 𝛾𝛾CD,𝑞𝑞) is derived from Eq. (6) with 
P� 𝑇𝑇𝑖𝑖2 > 𝑐𝑐𝜒𝜒2(1− 𝛼𝛼0,𝑞𝑞)|ℋ𝑖𝑖� = 𝛾𝛾CD. 

It is noted that Eq. (18) is the one that the 
conventional MDB concept are defined as, other than 
Eq. (17) [Baarda 1968, Teunissen 2006, Lehmann 
2014]. Apparently, although the identical 𝛼𝛼0 and 𝛾𝛾CD 
are defined, the noncentrality parameter in Eq. (17) 
and (18) are discrepant due to the unequal freedom 
degrees of the two test statistics. Since it satisfies 
𝑞𝑞 < 𝑟𝑟, the MDB under a single alternative hypothesis 
(Eq. (18)) should be always smaller than its 
counterpart under multiple alternative hypotheses (Eq. 
(17)).  

Generally, it is important to note that the MDB 
concept describes the sensitivity of rejecting the null 
hypothesis when the specified alternative hypothesis 

holds true. It means the existence of a model 
misspecification larger than its MDB will be 
successfully detected with a probability higher than 
𝛾𝛾CD, but the identification cannot be always ensured 
with the same probability for multiple alternative 
hypotheses case.  

The MIB of an alternative hypothesis ℋ𝑖𝑖  is 
defined as the smallest bias that leads to acceptance of 
ℋ𝑖𝑖 for a given CI probability. For multiple alternative 
hypotheses case, the correct identification will be 
triggered with the acceptance region defined in Eq. 
(7). Therefore, for a certain CI probability, say 
𝑃𝑃CI𝑖𝑖 = 𝛾𝛾CI, the MIB(𝒃𝒃𝑖𝑖), as a function of 𝛼𝛼0, 𝛾𝛾CI, 𝑞𝑞 
and r, is calculated relying on the noncentrality 
parameter from resolving  

 

𝑃𝑃 �𝑇𝑇𝑖𝑖2 = 𝑚𝑑𝑑𝑥
𝑖𝑖∈{1,⋯,𝑁𝑁}

𝑇𝑇𝑖𝑖2 ∩ 𝑇𝑇02

> 𝑐𝑐𝜒𝜒2(1− 𝛼𝛼0, 𝑟𝑟)|ℋ𝑖𝑖�

= 𝛾𝛾𝐶𝐶𝐼 

(19) 

As defined in Section 3.1.1, the discrepancy 
between detection and identification is caused by the 
unavoidability of the wrong identification for multiple 
alternative hypotheses. The MSB of an alternative 
hypothesis ℋ𝑖𝑖  corresponding to another ℋ𝑗𝑗≠0,𝑖𝑖  is 
defined as the smallest bias that leads to incorrect 
acceptance of ℋ𝑗𝑗 for a given upper boundary of the 
WIij probability. For multiple alternative hypotheses 
case, the wrong identification of ℋ𝑗𝑗≠0,𝑖𝑖  when ℋ𝑖𝑖 
holds true will be triggered with an acceptance region 
defined by Eq. (9). If an upper threshold of WI 
probability is defined, say PWI𝑖𝑖𝑖𝑖 ≤ 𝛾𝛾WI , the 
MSB�𝒃𝒃𝑖𝑖𝑖𝑖�, as a function of 𝛼𝛼0 , 𝛾𝛾WI , q and r, is 
calculated relying the noncentrality parameter from 
resolving  

 

𝑃𝑃 �𝑇𝑇𝑖𝑖≠0,𝑖𝑖
2 = 𝑚𝑑𝑑𝑥

𝑠∈{1,⋯,𝑁𝑁}
𝑇𝑇𝑠2 ∩ 𝑇𝑇02

> 𝑐𝑐𝜒𝜒2(1− 𝛼𝛼0, 𝑟𝑟)|ℋ𝑖𝑖�

= 𝛾𝛾𝑊𝐼 

(20) 

With above definition of MDB, MIB and MSB, a 
discrepant smallest bias for the alternative hypothesis 
model ℋ𝑖𝑖  is determined to satisfy specific 
requirements on the probabilities of CDi, CIi and WIij. 
Intrinsically, once 𝒃𝒃𝑖𝑖  is fixed, the corresponding 
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probabilities of CDi, CIi and WIij are all determined. 
Therefore, once can select one of the three to control 
the confidence levels of the testing decisions. Or else, 
by comparing the sizes of the three, the discrepancies 
among different decisions can be analyzed. Usually, 
due to the unavoidability of the WI, the MIB(𝒃𝒃𝑖𝑖) is 
always larger than MDB(𝒃𝒃𝑖𝑖)  for an identical 
𝑃𝑃CD𝑖𝑖 =  𝑃𝑃CI𝑖𝑖 = 𝛾𝛾 . For the k alternative hypothesis 
models, there are k-1 MSB�𝒃𝒃𝑖𝑖𝑖𝑖�  with 𝑗𝑗 = 1,⋯ ,𝑘𝑘 
and 𝑗𝑗 ≠ 𝑖𝑖, which indicate the separability between the 
alternative hypothesis ℋ𝑖𝑖  and another alternative 
hypothesis ℋ𝑗𝑗 [Yang et al. 2013, 2017]. Among these 
k-1 MSB�𝒃𝒃𝑖𝑖𝑖𝑖�, the largest one corresponds to the 
hypothesis with the largest 𝜌𝜌𝑖𝑖𝑖𝑖 as given in Eq. (14). 
This means larger 𝜌𝜌𝑖𝑖𝑖𝑖 implying a weaker separability 
between two alternative hypotheses. When 𝜌𝜌𝑖𝑖𝑖𝑖 = 1 
the two hypotheses are not separable, and 
identification between ℋ𝑖𝑖 and ℋ𝑗𝑗 becomes invalid. 
In this case, either the alternative hypotheses set 
should be reconstructed or decisions of accepting ℋ𝑖𝑖 
or ℋ𝑗𝑗 should be considered with a low confidence 
level. 

The conventional external reliability is defined as 
the maximum effect of any nondetectable outlier on 
the estimated parameters [Schaffrin 1997], which can 
be quantified by 

 𝒃𝒃�𝑥𝑥0(𝑃𝑃𝐷𝐷𝐵) = 𝑨𝑨0+𝑪𝑪𝑖𝑖 ∙ 𝑃𝑃𝐷𝐷𝐵(𝒃𝒃𝑖𝑖) (21) 

Accordingly, the bias-to-noise ratios (BNRs) 
introduced by Baarda in his reliability theory to 
measure the external reliability for single bias is 
defined as [Baarda 1967, 1976; Teunissen 2006] 

 𝐵𝑁𝑁𝐼𝐼𝑖𝑖 = 𝑨𝑨0+𝒄𝑖𝑖 (22) 
Which describes the propagation ratio from bias on 
measurement to the bias on parameter. 

Besides, the quadratic form of 𝒃𝒃�𝑥𝑥0(MDB) 

 
𝜆𝜆𝑥𝑥0 = 𝑨𝑨0+𝑪𝑪𝑖𝑖 ∙ 𝑃𝑃𝐷𝐷𝐵(𝒃𝒃𝑖𝑖) 

𝜆𝜆𝑥𝑥0
2 = �𝒃𝒃�𝑥𝑥0(𝑃𝑃𝐷𝐷𝐵)�

𝜮𝜮𝑥�0𝑥�0

2
 (23) 

can also be used as a measure of the external 
reliability [Koch 1999, Teunissen 2006].  

Another measure related to the external 
reliability for single bias is defined by 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 = 𝑨𝑨0+𝒄𝑖𝑖 �𝜮𝜮𝑏𝑏�𝑖𝑖𝑏𝑏�𝑖𝑖
−1�  (24) 

Where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖  describes the propagation ratio from 
the test statistic to the unknown parameter. Generally, 
above external reliability indices are aiming to 
measure the effect on the estimated parameters under 
missed detection. 

3.1.3 Biasedness, dispersion, and integrity of the 
estimated parameters 

With the DIA method, the outcome of testing 
determines how the parameter vector x gets estimated. 
By making use of the indicator function 𝑝𝑝𝑖𝑖(𝒕𝒕) of the 
regions 𝒫𝒫𝑖𝑖  (i.e. 𝑝𝑝𝑖𝑖(𝒕𝒕) = 1  for 𝒕𝒕 ∈ 𝒫𝒫𝑖𝑖  and 
𝑝𝑝𝑖𝑖(𝒕𝒕) = 0 elsewhere), the DIA estimator 𝒙𝒙� can be 
written in the compact form  

 𝑨𝑨� = �𝒙𝒙�𝑖𝑖𝑠𝑠𝑖𝑖(𝒕𝒕)
𝑁𝑁

𝑖𝑖=0

 (25) 

Due to the inevitability of committing false alarm, 
missed detection, and wrong identification, the DIA 
estimator 𝒙𝒙�  will be a combination of multiple 
individual estimators 𝒙𝒙�𝑖𝑖 , 𝑖𝑖 = 0,⋯ ,𝑘𝑘 . Although the 
individual estimators 𝒙𝒙�𝑖𝑖  are normally distributed 
with different expectations and dispersions, the 
combination, 𝒙𝒙�, are not normally distributed anymore. 
Based on Monte Carlo simulation with Nt independent 
experiments, the biasedness and dispersion of 𝒙𝒙� are 
evaluated as  

 

⎩
⎪⎪
⎨

⎪⎪
⎧𝐸𝐸(𝑨𝑨�|ℋ𝑖𝑖) =

1
𝑁𝑁𝑡𝑡
�(𝑨𝑨�|ℋ𝑖𝑖)𝑘

𝑁𝑁𝑡

𝑘=1
𝒃𝒃𝑨𝑨�|ℋ𝑖𝑖 = 𝑨𝑨 − 𝐸𝐸(𝑨𝑨�|ℋ𝑖𝑖)

𝐷𝐷(𝒙𝒙�|ℋ𝑖𝑖) =
1
𝑁𝑁𝑡𝑡
�[(𝑨𝑨�|ℋ𝑖𝑖)𝑘 − 𝐸𝐸(𝑨𝑨�|ℋ𝑖𝑖)]2
𝑁𝑁𝑡

𝑘=1

 (26) 

Apart from biasedness and dispersion, integrity is 
also important for the quality control of the parameter 
estimation. The integrity risk defined as the 
Probability of Hazardously Misleading Information 
(PHMI) is the probability that the estimator of 
unknown parameters is outside the error bound (or so 
called the Protection Level (PL)) around its true value, 
whatever hypothesis is true in reality [Blanch et al. 
2015, Zaminpardaz et al. 2019]. As integrity plays a 
crucial role in critical and safe-of-life applications, for 
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instance in aviation, when GNSS positioning is used 
to approach to an airport, stringent requirements and 
monitoring on integrity obviously apply.  

Being a good estimator of x, the DIA estimator 𝒙𝒙� 
is likely close to x with a sufficiently large probability, 
or with a sufficiently small PHMI. Defining an 
x-centered region ℬ𝒙𝒙, the PHMI can be expressed as 
[Blanch et al. 2010] 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃(𝑨𝑨� ∈ ℬ𝑨𝑨𝐶𝐶) = �𝑃𝑃(𝑃𝑃𝑃𝑃𝑃𝑃|ℋ𝑖𝑖)𝑃𝑃ℋ𝑖𝑖

𝑵𝑵

𝑖𝑖=0

= �𝑃𝑃(𝑨𝑨� ∈ ℬ𝑨𝑨𝐶𝐶|ℋ𝑖𝑖)𝑃𝑃ℋ𝑖𝑖

𝑵𝑵

𝑖𝑖=0

 

(27) 

Where ℬ𝒙𝒙𝐶𝐶 = ℝ𝑛𝑛 ℬ𝒙𝒙⁄  and 𝑃𝑃(𝐻𝐻𝐻𝐻𝐻𝐻|ℋ𝑖𝑖)  is the 
conditional PHMI when ℋ𝑖𝑖  holds true. With a 
predetermined region ℬ𝒙𝒙, the PHMI is determined by 
the priori probability Pℋ𝑖𝑖  and the PDF of 𝒙𝒙� . 
Inversely, with a predetermined threshold on 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 
and a specific definition on the shape, the region ℬ𝒙𝒙 
can also be determined. The latter is usually applied in 
RAIM/ARAIM algorithms to calculate the Horizontal 
PL (HPL) and Vertical PL (VPL) for precision 
approaches in aviation applications [Blanch et al. 
2010, 2012, 2015], where the region ℬ𝒙𝒙 is defined as  

 
ℬ𝑨𝑨 = {|𝑨𝑨�1 − 𝑨𝑨1| < 𝑃𝑃𝑃𝑃𝐿1  ∩  |𝑨𝑨�2 − 𝑨𝑨2|

< 𝑃𝑃𝑃𝑃𝐿2  ∩  |𝑨𝑨�3 − 𝑨𝑨3|
< 𝑉𝑃𝑃𝐿} 

(28) 

with 𝒙𝒙�∗, ′ ∗ ′ = 1,2,3  denotes the horizontal and 
vertical position solution of a DIA estimator for 
GNSS positioning applications, respectively. 
Rigorously, the PDF of 𝒙𝒙�  is not normal and this 
further complicates the calculation of the PHMI or the 
PL parameters.  

3.2 Interdependence of quality control indices 
when applying a DIA estimator 

Above discussion shows that the confidence levels of 
the testing decisions, the reliability of the hypothesis 
models, as well as the biasedness, dispersion, and 
integrity of the estimated unknown parameters are 
interdependent. The straightforward flowchart for 
determining these parameters is demonstrated in 
Figure 1.  

 
Figure 1 Demonstration of the parameters’ 

relationship in a DIA estimator 

Figure 1 shows that by directly specifying the 
bias of the alternative hypothesis model ℋ𝑖𝑖 and the 
probability of false alarm 𝑃𝑃FA, the probabilities of 
each type of testing decisions, and the conditional 
PDF, expectation, dispersion of the DIA estimator 𝒙𝒙� 
under ℋ𝑖𝑖  are determined accordingly. With a 
requirement on 𝑃𝑃(𝐻𝐻𝐻𝐻𝐻𝐻|ℋ𝑖𝑖), the conditional PL of 𝒙𝒙� 
under ℋ𝑖𝑖 can further be calculated, which together 
with the priori probability of the event ℋ𝑖𝑖 (𝑃𝑃ℋi) are 
used to determine the unconditional PDF, PL and total 
PHMI of the DIA estimator 𝒙𝒙� ultimately. With these 
parameters the overall performance of the DIA 
estimator applied on the specific null and alternative 
hypothesis models are evaluated. For the same size of 
bias 𝒃𝒃𝑖𝑖 , the values of 𝑃𝑃CD , 𝑃𝑃CI , 𝑃𝑃WI  of different 
alternative hypotheses, as well as the corresponding 
biases projected onto the unknown parameters are 
compared. It is noted that to implement the DIA 
procedure, the preset value of 𝑃𝑃FA  are usually 
required to determine the critical value for the 
detection and identification testing.  

Intrinsically, the value of 𝑃𝑃CD𝑖𝑖, 𝑃𝑃CI𝑖𝑖, 𝑃𝑃WI𝑖𝑖, and 
𝑃𝑃WI𝑖𝑖𝑖𝑖 are mutual dependent. Once the mathematical 
models of the null and alternative hypotheses are 
specified, the ratios of these probabilities are uniquely 
dependent on the size of 𝒃𝒃𝑖𝑖. Alternatively, if the value 
of 𝑃𝑃FA  and one of another testing decision 
probabilities under ℋ𝑖𝑖 are specified, the size of 𝒃𝒃𝑖𝑖 
can be inversely determined, so do the probabilities of 
other testing decisions under ℋ𝑖𝑖. Since this 𝒃𝒃𝑖𝑖 can 
produce the same value of either 𝑃𝑃CD, 𝑃𝑃CI, or 𝑃𝑃WI 
for each alternative hypothesis, it again makes 
comparison among the hypotheses possible, by 
ranking the alternative hypotheses in terms of an equal 
capability of detection or identification. It is also 
noted that the biases projected onto the unknown 
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parameters would be significant discrepant when the 
same size of 𝒃𝒃𝑖𝑖, or the same size of either 𝑃𝑃CD, or 
𝑃𝑃CI, or 𝑃𝑃WI is predefined under different alternative 
hypotheses. Generally, achieving smaller estimation 
bias, higher precision and lower protection level of the 
unknown parameters are the goal for a good DIA 
estimator. Thus, determining the statistical distribution 
characteristics of 𝒙𝒙� is essential, which is still less 
considered when applied a DIA procedure. 

4 Examples of integrity monitoring for three 
conventional DIA procedures 

Evaluating the confidence levels of the testing 
decisions, the reliability of the hypotheses, as well as 
the biasedness, precision and integrity of the estimated 
parameters can describe the overall performance of a 
DIA estimator, and therefore can be used as a quality 
control procedure. In order to study the actual 
performances of different DIA methods, a Monte 
Carlo simulation was conducted using some numerical 
examples. Such a simulation allows for a large 
number of independent realizations of the same 
experiment and a controlled environment, which can 
hardly be achieved using real data. Three practical 
DIA procedures are considered in the study: 
1. DIA1: Detection and identification are restricted 

to test between the null hypothesis ℋ0 and a 
single alternative hypothesis ℋ1, as defined in 
Eq. (6). In this procedure, the detection and 
identification become one step. However, 
identifying the unique alternative hypothesis 
model beforehand is a prerequisite.  

2. DIA2: Detection is performed using a global test 
of Eq. (4). Once the null hypothesis is rejected, 
the identification tries to accept the alternative 
hypothesis with the largest value of 𝑇𝑇𝑗𝑗2 , as 
defined in Eq. (7).  

3. DIA3: Detection is performed using another 
global test, as defined as 

 𝒫𝒫0 = �𝒕𝒕 ∈ ℝ𝑟 � 𝑚𝑑𝑑𝑥
𝑖𝑖∈{1,⋯,𝑁𝑁}

𝑇𝑇𝑖𝑖2 ≤ 𝑐𝑐(1− 𝛼𝛼0)� (29) 

Once the detection is triggered, the 
identification is further performed with the same 
local test as DIA2. 

4.1 GNSS single-point positioning data and preset 
thresholds  

The performances of above three DIA estimators are 
evaluated via a dual-constellation GNSS single-point 
positioning (SPP) example with the geometry defined 
by  

 

𝑨𝑨

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0.0225 0.9951 −0.0966 1 0
0.6750 −0.6900 −0.2612 1 0
0.0723 −0.6601 −0.7477 1 0
−0.9398 0.2553 −0.2269 1 0
−0.5907 −0.7539 −0.2877 1 0
−0.3236 −0.0354 −0.9455 0 1
−0.6748 0.4356 −0.5957 0 1
0.0938 −0.7004 −0.7075 0 1
0.5571 0.3088 −0.7709 0 1
0.6622 0.6958 −0.2780 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 
(30) 

with the variance matrix of observation y is given by  

 
𝜮𝜮𝑦𝑦𝑦𝑦

= 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �
[3.8865 1.4377 0.8604 1.6383 1.3229
0.8434 0.8963 0.8669 0.8573 1.3616]� 

(31) 

To compute those performance evaluation 
parameters mentioned above, a single bias of its MDB 
size is specifically introduced on one of the original 
observations. The MDB is computed from Eq. (18) 
with a specific value of noncentrality parameter 𝜆𝜆0. 
The study yields estimated probabilities of the testing 
decisions defined in Section 3.1, as well as the bias, 
dispersion and PL of 𝒙𝒙� defined in Section 3.3. The 
critical value of the testing is determined by presetting 
𝑃𝑃FA = 𝛼𝛼0 . The conditional PHMI is preset as 
𝑃𝑃(𝐻𝐻𝐻𝐻𝐻𝐻|ℋ𝑖𝑖) = 𝐼𝐼𝐼𝐼0 = 1 × 10−4. 

By setting 𝛼𝛼0 = 0.1% , the critical value of 
DIA1, and DIA2, are calculated as 𝑐𝑐1 = 𝑐𝑐χ2(1−
𝛼𝛼0, 1) = 10.83  and 𝑐𝑐2 = 𝑐𝑐χ2(1− 𝛼𝛼0, 5) = 20.52 . 
While it is complicate to compute the critical value of 
DIA3 algebraically, therefore we get the value of 𝑐𝑐3 
by the Monte Carlo simulation. With 𝑁𝑁𝑡𝑡 = 1 × 106 
times independent experiments, the PDF and 
Cumulative Distribution Function (CDF) of test 
statistics 𝑇𝑇𝑖𝑖2 defined as 

 
𝑃𝑃 �𝑇𝑇𝑖𝑖2 = 𝑚𝑑𝑑𝑥

𝑖𝑖∈{1,⋯,𝑁𝑁}
𝑇𝑇𝑖𝑖2 ≤ 𝑐𝑐(1− 𝛼𝛼0)|ℋ0�

= 𝛼𝛼0 
(32) 
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can be drawn and used to determine the value of 𝑐𝑐3 
with specific value of 𝛼𝛼0, as illustrated in Figure 2. It 
shows that 𝑐𝑐3 = 𝑐𝑐(1− 𝛼𝛼0) = 15.14. 

 
Figure 2 PDF and CDF of the global test statistics for 

DIA3 

4.2 Analyses under two bias models with a unique 
internal reliability 

By setting 𝛼𝛼0 = 0.1%, and 𝑃𝑃CD = 80% for DIA1, 
the noncentrality parameter 𝜆𝜆0 = 4.13  is 
predetermined, and a bias with a size of its MDB at 
𝑦𝑦1 and 𝑦𝑦9 is simulated respectively. With 𝑁𝑁𝑡𝑡 = 1 ×
106 times independent experiments, the performances 
of three DIA methods are analyzed in terms of the 
probabilities of different testing decisions, the PDF 
and absolute CDF of the parameter estimation errors 
(𝒙𝒙� − 𝒙𝒙), as well as the conditional PLs, biases and 
dispersions of the estimated unknown parameters 
under ℋ1 and ℋ9. Since we care more about the 
positioning parameters than the receiver clock error 
parameter, only the results of horizontal positioning 
parameters (𝒙𝒙1,𝒙𝒙2)  and vertical positioning 
parameters(𝒙𝒙3) are presented below. 

The probabilities PMD, PCI, PWI of the three DIA 
methods are listed in Table 1. It shows obvious 
discrepancies among the three methods, and 
probabilities under ℋ1  and ℋ9  are quite close. 
Among the three methods, the PMDs of DIA1 are the 
smallest, and are coincident with the preset theoretical 
value, 1 − PCD = 20%. The PMDs of DIA2 are the 
largest, up to 47.3%, which are also coincident with 

the theoretical value, computed as ∫ 𝜒𝜒2(𝑟𝑟 = 5, 𝜆𝜆02 =𝑐𝑐2
0

4.132). The PMDs of DIA3 are much smaller than 
those of DIA2, but still as large as 39.9%. Both the 
DIA2 and DIA3 introduce wrong identifications. 
Generally, the PWIs under ℋ1  are slightly smaller 
than that under ℋ9 when the estimator DIA2 or DIA3 
is implemented. Accordingly, the PCI under ℋ1  is 
somewhat higher than that under ℋ9. Probabilities 

listed in Table 1 shows the discrepancies of the three 
different DIA methods on the confidence levels of the 
testing decisions. 

The PDFs and absolute CDFs of the estimation 
errors (𝒙𝒙� − 𝒙𝒙) on the two unknown parameters are 
plotted in Figure 3. It shows significant differences 
between ℋ1 and ℋ9 no matter which DIA method 
is implemented. Apparently, the distributions of 
estimation errors 𝒙𝒙� − 𝒙𝒙 under ℋ1 still keep normal 
and show little discrepancies among different DIA 
methods, although there are higher probabilities of 
committing missed detection when DIA2 or DIA3 is 
conducted. Instead, the results under ℋ9  are 
apparently not normally distributed, and show 
significant discrepancies when different DIA method 
is conducted. The bimodal distribution characteristics 
of the estimation errors under ℋ9  become much 
more conspicuous for DIA2 and DIA3. As the 
discussion in Section 3, the bimodal distributions are 
mainly composed by the two different normal 
distributions resulting from correct identification and 
missed detection, since the probabilities of wrong 
identification are still trivial under the simulated bias 
models.  

Table 1 Probabilities of testing decisions under ℋ1 
and ℋ9 

 PMD (%) PCI (%) PWI (%) 

ℋ𝑖𝑖 ℋ1 ℋ9 ℋ1 ℋ9 ℋ1 ℋ9 

DIA1 20.0  20.0  80.0  80.0  0.0  0.0  

DIA2 47.3  47.3  51.2  50.6  1.6  2.1  

DIA3 39.9  39.7  58.9  58.6  1.2  1.7  

 
Figure 3 PDFs and CDFs of the parameter estimation 

errors of three DIA methods 
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Table 2 PLs, biases and dispersions of the estimated 
unknown parameters under ℋ1 and ℋ9 

 𝒙𝒙�1 
 PL(𝒙𝒙�|ℋ𝑖𝑖) 𝒃𝒃𝒙𝒙�|ℋ𝑖𝑖 std(𝒙𝒙�|ℋ𝑖𝑖) 
ℋ𝑖𝑖 ℋ1 ℋ9 ℋ1 ℋ9 ℋ1 ℋ9 

DIA1 2.61  3.75  0.04  0.21  0.67  0.99  

DIA2 3.07  4.68  0.13  0.66  0.69  1.19  

DIA3 3.00  4.67  0.11  0.53  0.69  1.17  

 𝒙𝒙�2 

 
ℋ𝑖𝑖 

PL(𝒙𝒙�|ℋ𝑖𝑖) 𝒃𝒃𝒙𝒙�|ℋ𝑖𝑖 std(𝒙𝒙�|ℋ𝑖𝑖) 
ℋ1 ℋ9 ℋ1 ℋ9 ℋ1 ℋ9 

DIA1 4.24  4.03  0.22  0.19  1.10  1.03  

DIA2 7.46  4.82  0.69  0.59  1.34  1.18  

DIA3 7.46  4.75  0.56  0.47  1.32  1.16  

 𝒙𝒙�3 
 PL(𝒙𝒙�|ℋ𝑖𝑖) 𝒃𝒃𝒙𝒙�|ℋ𝑖𝑖 std(𝒙𝒙�|ℋ𝑖𝑖) 
ℋ𝑖𝑖 ℋ1 ℋ9 ℋ1 ℋ9 ℋ1 ℋ9 

DIA1 6.91  8.83  0.00  -0.39  1.78  2.25  

DIA2 8.96  14.33  -0.03  -1.20  1.84  2.62  

DIA3 8.77  14.32  -0.03  -0.96  1.83  2.57  

To further analyze the performances of the 
estimated parameters, the PLs, biases on expectation, 
and standard deviations (stds) of 𝒙𝒙�|ℋ𝑖𝑖  are drawn 
from the PDFs and CDFs given in Figure 3 and listed 
in Table 2, with the conditional PHMI being given as 
𝑃𝑃(𝐻𝐻𝐻𝐻𝐻𝐻|ℋ𝑖𝑖) = 𝐼𝐼𝐼𝐼0 = 1 × 10−4 . It shows the best 
performances on parameter estimation are achieved by 
DIA1, with smallest PLs, biases and stds under both 
ℋ1 and ℋ9. The performances of DIA2 and DIA3 are 
much similar, except that the biases on expectation of 
DIA2 are slightly larger. Comparisons between ℋ1 
and ℋ9  show that all the three DIA estimators 
display better performances on 𝒙𝒙�1 and 𝒙𝒙�3 and worse 
performances on 𝒙𝒙�2  under the former. Generally, 
although the two bias models are simulated with the 
equivalent internal reliability and produce similar 
confidence levels on testing decisions, the 
performances on the parameter estimations are quite 
discrepant. As discussions in Section 3.1.3, the reason 
is the conditional normal-distributed PDF of the 
estimated parameters would be characterized with 
discrepant expectations and dispersions under 
different bias models. 

4.3 Analyses under two bias models with the 
influence of changeable internal reliability  

Apparently, the DIA estimator would account for a 
worse performance on the parameter estimation when 
the bias 𝒃𝒃𝑖𝑖 is neither too large nor too small. Since a 
small bias would impact the parameter insignificantly, 
and a significantly large bias can be correctly detected 
and identified with high confidence levels. To 
demonstrate the performance discrepancies on the 
parameter estimations with a different size of 𝒃𝒃𝑖𝑖, the 
noncentrality parameter, 𝜆𝜆0 , used to calculate the 
MDB of 𝒃𝒃𝑖𝑖 under ℋ1 and ℋ9 are simulated from 0 
to 10 with a step length of 0.2. By setting 𝛼𝛼0 = 0.1% 
and 𝑃𝑃(𝐻𝐻𝐻𝐻𝐻𝐻|ℋ𝑖𝑖) = 1 × 10−4, the Probabilities of CI, 
MD and WI of three DIA methods are shown in 
Figure 4, and the PLs, biases and dispersions of the 
estimated unknown parameters under ℋ1  and ℋ9 
are shown in Figure 6. Table 3 lists the estimated 
squared variances of the unknown parameters when 
applying different hypothesis models. Table 4 presents 
the values of BNRs and slopes for the unknown 

parameters, as well as �𝑷𝑷𝑨𝑨0
⊥ �

𝑖𝑖𝑖𝑖
-the diagonal value of 

matrix 𝑷𝑷𝑨𝑨0
⊥ , which are conventionally used as 

reliability indices in previous studies. 
Figure 4 shows that the corresponding 

probabilities of CI and MD for ℋ1  and ℋ9  are 
similar. As 𝜆𝜆0 increases, PCI gradually increase from 
0 to 1 and PMD encounter adverse tendencies. For a 
specific 𝜆𝜆0, PCI of DIA1 is the largest, and PCI of 
DIA2 is the smallest. This indicates that the overall 
confidence level of testing decisions for DIA1 is the 
highest, and that for DIA2 is the lowest. Theoretically, 
PMD for each DIA estimator under ℋ1  and ℋ9 
should be equivalent for the same 𝜆𝜆0. Generally, the 
probabilities of WI show parabolic change tendencies, 
increasing gradually at first and then decrease to 0 as 
the bias is large enough. Also, PWI for DIA2 are much 
higher than those for DIA3 under both ℋ1 and ℋ9. 
When the same DIA estimator is applied, the PWI for 
ℋ9 are always much large than those for ℋ1. It is 
noted that WI are always not considered for DIA1.  

The discrepancies on PWI under ℋ1  and ℋ9 
can be further explained by the discrepant correlation 
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coefficients between the implemented model (ℋ1 or 
ℋ9) and another one. As shown in Figure 5, the 
correlation coefficients between ℋ1  and another 
alternative hypothesis are generally much smaller than 
those between ℋ9  and another one. Since larger 
correlation coefficient will result in a higher 
probability of wrong identification, the total PWI under 
ℋ9 will be larger than that under ℋ1. Also, since the 
correlation coefficients between any two alternative 
hypotheses are not significantly large (i.e. >0.8), the 
total probabilities of WI for this example are relatively 
unremarkable, always under 2%. 

Figure 6 shows distinguished differences on the 
parameter estimation performances when the three 
DIA estimators are implemented under either ℋ1 or 
ℋ9. Generally, PLs, biases and stds of 𝒙𝒙�1 and 𝒙𝒙�3 
under ℋ9  are apparently larger than their 
counterparts under ℋ1 . Also, the influences of 
different 𝒃𝒃𝑖𝑖 on 𝒙𝒙�1 and 𝒙𝒙�3 under ℋ9 are relatively 
more significant and discrepancies among the three 
DIA estimators are much larger than under ℋ1 . 
However, the performances on 𝒙𝒙�2  are reversed. 
Comparisons among the three DIA estimators show 
that DIA1 always performs much better than DIA2 and 
DIA3, and performances of DIA2 are slightly worse 

than DIA3. Specifically, PLs of 𝒙𝒙�1|ℋ9  increase 
gradually from around 2.6 to 3.8 for DIA1 and to 5.4 
for DIA2 and DIA3, and then all decrease more rapidly 
to around 3 as the size of 𝜆𝜆0  increases to 10. 
Similarly, the biases of 𝒙𝒙�1|ℋ9  increase from 0 to 
0.65, 0.93, and 0.87 respectively and then gradually 
fall back to 0 for the three methods. The stds of 
𝒙𝒙�1|ℋ9  increase from 0.65 to 1.05, 1.20 and 1.17 
respectively and then all fall to 0.76 for the three 
methods. Performances on 𝒙𝒙�2|ℋ9  and 𝒙𝒙�3|ℋ9  are 
similar with 𝒙𝒙�1|ℋ9, with DIA2 being the worst and 
DIA1 being the best. It is noted that the sizes of 𝜆𝜆0 
for the PLs, biases and stds reaching their largest 
values are different for each DIA estimator. Generally, 
the sizes of 𝜆𝜆0  corresponding to the largest PLs, 
biases and stds for DIA1 are the smallest, and those for 
of DIA2 are slightly larger than DIA3. The largest PLs 
of 𝒙𝒙�1|ℋ9  appear at 𝜆𝜆0 = 5.0  for DIA1 and 
𝜆𝜆0 = 6.2 for DIA2 and DIA3; The largest biases of 
𝒙𝒙�1|ℋ9  appear at 𝜆𝜆0 = 2.4 , 3.0 and 2.8, and the 
largest stds appear at 𝜆𝜆0 = 3.4, 4.4 and 4.2 for the 
three DIA estimators respectively. Comparably, PLs of 
𝒙𝒙�1|ℋ1 are always smaller than 3, the largest bias on 
𝒙𝒙�1|ℋ1 is just around 0.20, and stds change rarely 
between 0.66 and 0.7 for all the three DIA estimators. 

 

Figure 4 Probabilities of CI, MD and WI of three DIA methods under ℋ1 and ℋ9 

 
Figure 5 correlation coefficients between the implemented model (ℋ1 or ℋ9) and another one 
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Figure 6 PLs, biases and dispersions of the parameter estimation errors of three DIA methods 

Table 3 Estimated squared variances of the parameters under each alternative hypothesis model 

ℋ𝑖𝑖 0 1 2 3 4 5 6 7 8 9 10 

�𝜮𝜮𝑥𝑥�𝑖𝑖𝑥𝑥�𝑖𝑖 

𝒙𝒙1 0.66 0.66 0.74 0.69 0.74 0.71 0.68 0.78 0.66 0.76 0.74 

𝒙𝒙2 0.79 0.88 0.83 0.81 0.82 0.88 0.79 0.80 1.16 0.86 0.80 

𝒙𝒙3 1.78 1.78 1.89 2.51 1.80 1.96 2.03 1.80 1.99 1.92 2.05 

It is interesting to notice that as the size of 𝜆𝜆0 
enlarges, PLs, biases and stds of both 𝒙𝒙�1|ℋ1  and 
𝒙𝒙�1|ℋ9 tend to an equivalent value, no matter which 
DIA estimator is applied. The reason is 𝒙𝒙�|ℋ𝑖𝑖  for 
𝜆𝜆0 = 0 are dominant by 𝒙𝒙�0 (solution of Eq. (1)), and 
𝒙𝒙�|ℋ𝑖𝑖 for a significantly large 𝜆𝜆0 are dominant by 𝒙𝒙�𝑖𝑖 
(solution of Eq. (2)). Therefore, in both cases, 𝒙𝒙�|ℋ𝑖𝑖 
will be unbiased, stds of 𝒙𝒙�|ℋ𝑖𝑖 are the squared value 
of 𝜮𝜮𝑥𝑥�0𝑥𝑥�0 or 𝜮𝜮𝑥𝑥�𝑖𝑖𝑥𝑥�𝑖𝑖 as listed in Table 3, and PLs of 
𝒙𝒙�|ℋ𝑖𝑖 are determined by the std values and the preset 
value of 𝑃𝑃(𝐻𝐻𝐻𝐻𝐻𝐻|ℋ𝑖𝑖). 

The performance discrepancies between ℋ1 and 
ℋ9 can be explained qualitatively by those reliability 
indices given in Table 4, which are conventional 
investigated in previous studies. The discrepancies on 
the PLs and biases under ℋ1 and ℋ9 are explained 
by the values of BNR and slope listed in the 5nd to 10th 
row of Table 4. As defined in Eq.(22) and (24), BNR 

is the ratio between 𝒃𝒃𝑖𝑖  and 𝒃𝒃𝑥𝑥𝑖𝑖0 , and slope is the 
ratio between 𝜆𝜆0  and the 𝒃𝒃𝑥𝑥𝑖𝑖0 . Therefore, larger 
BNR or slope indicates that larger bias would be 
introduced on the estimated parameter for the same 

size of 𝒃𝒃𝑖𝑖  or 𝜆𝜆0 . Also, �𝑷𝑷𝑨𝑨0
⊥ �

𝑖𝑖𝑖𝑖
 known as the 

redundancy of the measurement indicates the impact 
of the measurement on the estimated parameters. 
Measurement with redundancy closer to 1 would less 
impact the biasedness and dispersion of the parameter 
estimation. The consistent results for ℋ1  and ℋ9 
are observed in Figure 6. Although the confidence 
level of testing decisions under ℋ1  and ℋ9  are 
similar, the performances on the parameter estimation 
are significantly discrepant, where bias model ℋ1 
impacts the PLs, biases and stds of 𝒙𝒙�1 and 𝒙𝒙�3 much 
less, and impacts 𝒙𝒙�2 much more. 
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Table 4 BNRs, slopes and redundancies of each measurement 
Measurement 

No. 
1 2 3 4 5 6 7 8 9 10 

BNR 

𝒙𝒙1 0.03 0.21 0.14 -0.20 -0.18 -0.14 -0.32 -0.03 0.30 0.19 
𝒙𝒙2 0.17 -0.15 0.11 0.13 -0.26 0.09 0.10 -0.55 0.27 0.09 
𝒙𝒙3 0.00 0.39 -1.06 0.14 0.53 -0.79 0.18 0.58 -0.56 0.58 

slope 

𝒙𝒙1 0.08 0.35 0.23 -0.34 -0.28 -0.18 -0.42 -0.05 0.39 0.34 
𝒙𝒙2 0.40 -0.25 0.18 0.23 -0.40 0.11 0.13 -0.85 0.34 0.17 
𝒙𝒙3 -0.01 0.65 -1.77 0.25 0.83 -0.98 0.24 0.90 -0.72 1.03 

�𝑷𝑷𝑨𝑨0
⊥ �

𝑖𝑖𝑖𝑖
 0.69 0.53 0.31 0.55 0.54 0.54 0.52 0.36 0.52 0.44 

4.4 Analyses under two bias models with the 
influence of changeable PFA 

In this subsection, we discuss the impacts of the preset 
value of PFA, which are used to determine the critical 
value for detection. With the preset value of 
PFA=α0=0.5%, 1%, 5%, 10%, probabilities of CI, MD 
and WI of the three DIA methods under ℋ1 and ℋ9 
respected to 𝜆𝜆0 = 0 to 10 are plotted in Figure 7, to 
demonstrate the confidence level of testing decisions. 
The corresponding values of PLs, biases and 
dispersions of parameter 𝒙𝒙�1 are plotted in Figure 8, 
to demonstrate the performances on parameter 
estimation of the three DIA estimators. The results of 
parameter 𝒙𝒙�2  and 𝒙𝒙�3  display similar tendencies, 
therefore are not presented. 

Figure 7 shows that larger PFA will produce 
higher PCI and lower PMD no matter which DIA 
estimator is applied. Specifically, as PFA changes from 
0.5% to 10%, PCI of DIA1 will increase from 21% to 
64%, and PCI of DIA2 and DIA3 will increase from 7% 
to 26% for 𝜆𝜆0 = 2. PCI of all the three estimators will 
go up to close 1 when 𝜆𝜆0 increase to 6. PMD of the 
three methods generally show adverse tendencies as 
PCI. PWI of DIA2 and DIA3 show nonmonotonic 
tendencies, firstly increasing and then falling to 0 with 
𝜆𝜆0 becoming large enough. Also, PWI become much 
higher for larger PFA. This means the reduction on 
PMD caused by a larger PFA will be allocated to both 
PCI and PWI. Note that as PFA enlarges PCI of DIA1 
will increase gradually from 0 to 10%, while PCI of 
DIA2 and DIA3 always keep around 0% for 𝜆𝜆0 = 0. 
Similarly, PMD of the three estimators all decrease 
from 99.5% to 90% for 𝜆𝜆0 = 0, and discrepancies 

among estimators are insignificant. While, PWI of 
DIA2 and DIA3 increase from 0.5% to 9% for λ0 = 0. 
These discrepancies can be explained by the 
definitions given in Eq.(8). Theoretically, PMD 
presents the probability of correct acceptance of ℋ0 
when 𝜆𝜆0 = 0, so it should be equal to the value of 
1-PFA for all the three estimators. Also, the sums of 
PCI and PWI for 𝜆𝜆0 = 0 should be the probability of 
false alarm. Since PWI of DIA1 are 0, PCI of DIA1 are 
always higher than the other estimators. It is also 
noted that the minimal values of 𝜆𝜆0  for PMD 
declining to 0, and for PWI reaching the maximum, 
become smaller for larger PFA. This indicates that the 
confidence level of the testing decisions for smaller 
biases will increase when PFA getting larger. 

Figure 8 shows the change tendencies of PLs, 
biases and dispersions of parameter 𝒙𝒙�1 with different 
values of PFA. Generally, performances of PLs for 
different PFA are similar, with the maximum values of 
PLs unchanged. Comparably, as PFA enlarges the 
biases and stds of 𝒙𝒙�1 will all reduce for the three 
estimators. This means under a specified bias model, a 
larger PFA will benefits the DIA estimator in terms of 
smaller biases and dispersions on the parameter 
estimation. When the bias is larger enough, PLs, 
biases and dispersions of the parameter will tend to a 
fixed value which is independent to the value of PFA 
and by the DIA estimator. This indicates that different 
DIA estimators and different critical values for 
hypothesis testing generally show discrepant effects 
when the bias is of medium sizes. Inherently, how a 
DIA estimator would perform for a bias with medium 
size could be an effective criterion to measure its 
general robustness, since an unremarkable bias will 
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not influence the parameter estimation severely, and a 
significantly large bias will be correctly identified 

much easier. 

 
Figure 7 Probabilities of CI, MD and WI of three DIA methods under ℋ1 and ℋ9 with different PFA 

(0.5%, 1%, 5%, 10%) 

 
Figure 8 PLs, biases and dispersions of 𝒙𝒙�1 of three DIA methods under ℋ1 and ℋ9 with different PFA 

(0.5%, 1%, 5%, 10%) 
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5 Conclusions 

In this paper, we discuss the integrity assessment 
for generalized DIA estimators. Performance indices 
of a DIA estimator are defined from three aspects, 
those are, the confidence levels of the hypothesis 
testing decisions, the reliability of the alternative 
hypothesis models, as well as the biases, dispersions, 
and PLs of the estimated parameters. The 
interdependences of these indices are detailed 
explained and discussed.  

By these indices, the quality of three 
conventional used DIA estimators is evaluated and 
compared via a GNSS SPP numerical example. To 
ensure a scientifically fair comparison, all 
computations are based on the same noncentrality 
parameter, 𝜆𝜆0, and PFA. Firstly, the confidence levels 
of the testing decisions by using the three DIA 
estimators are evaluated and compared, which 
confirms that different methods provide discrepant 
probabilities of correct detection, correct identification 
and wrong identification. Secondly, the PDFs and 
CDFs of the estimated parameters under a specified 
hypothesis model are displayed, which probably show 
significant non-Guassian properties, and exhibit 
remarkable discrepancies among different hypothesis 
models. Finally, based on the PDFs, the PLs, biases 
and dispersions of the estimated parameters are further 
computed to demonstrate the performances of the DIA 
methods on the parameter estimation. 

By shifting the value of 𝜆𝜆0, it shows that for all 
DIA estimators, controlling the performance for bias 
with medium size would be the most challenging task. 
Also, different DIA estimators could exhibit much 
more remarkable discrepancies in this case. By 
shifting the value of PFA, it shows that when a bias 
model occurs larger PFA could certainly improve the 
quality of the DIA estimator, by increasing the 
probability of correct identification, as well as 
reducing biases and dispersions of the estimated 
parameters. However, since biases usually occur with 
a relatively low possibility in a practical application, 
larger PFA, on the other hand, would wrongly exclude 
more normal observations, and therefore may reduce 
the quality of the DIA estimator. Generally, quality of 

a DIA estimator is ultimate measured based on the 
PDF of the estimated parameters 𝒙𝒙�, which would be 
uncertainly influenced by the priori probability of 
occurrence on a specific bias model ℋ𝑖𝑖.   
Data availability: Necessary data is accessible in the 
Numerical Example Section of the manuscript. 
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