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Abstract: The Global Navigation Satellite System 
(GNSS) signals are often blocked or interfered in 
complex geographical or electromagnetic 
environments, which may make GNSS receivers 
unable to provide satisfying navigation and 
positioning services. There have been many 
ground-based or space-based GNSS augmentation 
systems to improve the resilience of GNSS 
positioning, of which most of them rely on additional 
infrastructures. In this study, a smartphone-based 
tightly-coupled positioning method was developed 
using the images from a build-in monocular camera 
and GNSS signals. In this method, the feature points 
with the known coordinates are regarded as ‘visual 
pseudolite’ and the distance between the camera and 
the feature points was calculated according to the 
photogrammetry approaches and used to estimate the 
user positioning with GNSS signals. The 
experimental results showed the feasibility of the 
tightly-coupled positioning algorithm and reached the 
positioning accuracy of ±5.56 m (1σ), which is 
significantly higher than that of GNSS-only and 
vision-only positioning solutions. 

Keywords: visual positioning; GNSS; 
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1. Introduction 

Global Navigation Satellite Systems (GNSS) 

have been widely used in positioning and navigation. 
GNSS signals work well in the open sky, but are 
often blocked or interfered in less GNSS-friendly 
environments, which degrade or even interrupt the 
positioning service [1]. On the other hand, GNSS 
interference, jamming and fraud occur frequently, 
which makes the GNSS-based positioning more 
difficult [2,3]. The future alternative positioning, 
navigation and timing (PNT) framework will 
expectedly achieve flexible and tough navigation and 
positioning services by integrating multiple 
heterogeneous navigation sources [4]. The method of 
multi-source fusion from the assured PNTs ensures 
the high availability of navigation and positioning 
services [5].  

Generally, there are three types of augmentation 
methods to improve satellite-based positioning 
availability: signal augmentation, matching, and dead 
reckoning. There are multiple GNSS signal 
augmentation approaches, such as the pseudolite 
[6,7], low earth orbit (LEO) navigation signal 
augmentation [8,9], cellular network, Wi-Fi signal 
[10], acoustic signal, and Radar, Loran-C, etc. This 
augmentation employs external infrastructures or 
actively transmitting signals to obtain more 
geometrical information for positioning. The 
matching algorithm relies on certain prior 
information, such as the magnetic field[11], the 
strength field of radio frequency (RF) signals, or 
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image features. Since the matching algorithm does 
not require geometry observation，it is often loosely 
coupled with the other positioning techniques, such 
as GNSS. The dead reckoning technique can be 
applied for navigation using the accumulated position 
change, such as the inertial sensors[12,13], visual 
odometer with cameras and/or LiDAR [14], 
simultaneous localization and mapping (SLAM)[15], 
etc. The dead reckoning methods can be either 
loosely coupled or tightly coupled with GNSS to 
obtain a smoother trajectory. However, most dead 
reckoning approaches are not capable of determining 
the initial states, which may lead to navigation failure 
when starting navigation in GNSS denied 
environments. 

The visual information is often used for local 
navigation, such as the SLAM technique and the 
visual odometers. These approaches determine the 
user movement by matching the features between two 
consecutive images. It can also be used for absolute 
positioning with cooperative targets, such as the QR 
code[16], the text[17], or other encoded targets [18]. 
The vision-based positioning is particularly suitable 
for positioning locally since the positioning accuracy 
will significantly decrease as the distance increases 
between the object and the camera. As a result, 
vision-based positioning techniques are mainly used 
to solve indoor positioning problems [19]. Because of 
the anti-jamming characteristics of the visual ranging 
signal, as well as the low price and portability of the 
cameras and GNSS receivers, the integration of 
GNSS and visual positioning systems has become a 
momentous issue for researchers [12-14]. 

In this research, a new GNSS/Vision 
tightly-coupled positioning method was proposed and 
developed toward improving the positioning 
availability and accuracy in the GNSS-denied 
environment. We viewed those feature points with 
their known coordinates as the ‘visual pseudolites’ 
and calculated the distance between the feature points 
and users via the photogrammetry methods. Then 
these visual ranges were combined with the GNSS 
signals to estimate the user positions. The visual 
pseudolite does not requires additional infrastructure 
deployment and immune from electromagnetic 

inference. In the future, a measurable 3D map can be 
used as the feature database to provide enough 
‘visual pseudolite’, which is particularly beneficial 
for these GNSS challenging environments, such as 
the city canyon.  

The remainder of this paper is organized as 
follows: the related work is reviewed in Section 2. 
Then, Section 3 presents the GNSS/Visual 
Localization (VL) tightly coupled model while the 
procedure of extracting the visual ranges is 
introduced in Section 4. Section 5 provides the results 
and discussion of the experiments. In the end, Section 
6 concludes the manuscript and outlines the potential 
future research.  

2. Related Work 

Since GNSS-based positioning has been 
extensively studied, we put out focus on vision-based 
localization. The literature review here includes the 
visual localization approaches and the existing 
GNSS/VL integration approaches. 

2.1 Visual Localization 

Visual localization is an essential research topic 
in the field of computer vision, and the specific 
technology can be roughly divided into three 
categories. The most common method depends on 
monocular vision, including positioning by 
processing single images or multiple images. Fischler 
et al. [20] proposed the PnP problem 
(perspective-n-point problem), which is a positioning 
method according to the projection relationship 
between n feature points and their corresponding 
spatial positions. Liu et al[21] established a 
geometric model to determine the camera position 
according to the correspondence between 2D and 3D 
lines or points. The second type of visual localization 
is the binocular vision-based approach, which 
demands a large amount of computation and is 
difficult to match image points. The SIFT features 
have been widely used in binocular stereo matching 
due to their robustness to scale, rotation, angle of 
view, and other changes [22,23]. The third type relies 
on panoramic vision with complex measurement 
depth. Yagi et al. [24] firstly applied the 
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omnidirectional vision system with a hyperbolic 
mirror to the navigation of mobile robots. Since then, 
the panoramic vision-based localization method has 
been widely studied. 

2.2 GNSS/vision combined Localization 

GNSS provides real-time and all-weather global 
positioning service and do not accumulate 
positioning errors with time. However, the GNSS 
signals are vulnerable to obstructions and 
interferences, so their performance needs to be 
improved in the GNSS challenging environment. 
There have been quite a few attempts to integrate 
GNSS with the vision-based localization approaches, 
which provide position increments most likely using 
inertial sensors and/or different odometers [25]. On 
the other hand, position and velocity information 
from GNSS can also be used for global optimization 
and geo-referencing in visual SLAM 
computation[26]. In terms of their integration 
architectures, the GNSS and vision information can 
be integrated with either loosely or tightly coupled 
approaches.  

Due to their complementary characteristics, the 
GNSS and vision integration can fully take their 
advantages. The monocular visual odometer suffers 
from a rank deficency with the trajectory scale, but it 
provides high relative positioning precision. GNSS 
positioning results in absolute positioning solutions, 
but its performance is vulnerable to the observation 
conditions. In the form of loosely coupled methods, 
one preprocesses two subsystems to deliver their 
results separately and then fuses them to obtain the 
integrated solution by the factor graph or filters. 
Dusha and Mejias [27] proposed a loosely coupled 
filtering method for monocular cameras and GPS, 
which is similar to the traditional GPS/INS loosely 
coupled filtering method. Chen et al. [28] confirmed 
that the monocular camera could significantly 
improve the GNSS positioning accuracy when in 
GNSS-denied environments. The fusion of visual 
information and GNSS data based on iterative 
optimization is also verified to be feasible[26]. The 
limitation of the loosely coupled localization system 
is that the visual information cannot be utilized to 
improve the availability of GNSS positioning. When 

GNSS signals become invalid, the loosely coupled 
system can only rely on the visual information, which 
may degrade the performance in terms of long-time 
GNSS loss-of-lock. 

With the tightly coupled GNSS/vision 
localization integration architecture, the carrier 
phases and pseudoranges from GNSS receivers are 
directly fused with the visual information [29]. The 
current tightly coupled system resorts to the camera 
information to identify the none-line-of-sight (NLOS) 
signals. Paul and Kyle [30] proposed an NLOS effect 
suppression algorithm based on LOS satellite 
selection for harsh environments. The images 
collected by the sky-pointing camera were divided 
into the open sky and obstructed regions. The 
satellites falling into the obstructed region would be 
rejected to participate in the final position calculation. 
On this basis, the satellite signal and visual 
information were tightly coupled through Kalman 
filter to provide the positional solution. Similarly, 
Suzuki employed the sky-pointing photo matching to 
eliminate wrong position candidate and thus improve 
the positioning accuracy[31]. These approaches can 
improve positioning accuracy in GNSS challenging 
environments, but cannot improve the GNSS signal 
availability in GNSS-denied environments. Another 
tightly coupled system is to tightly fuse GNSS 
signals with sensors such as the visual odometer. The 
changing information of relative positions provided 
by the visual odometer constrains the GNSS 
trajectory toward improving the positioning accuracy. 
Schreiber and Konigshof [32] proposed a method to 
combine the local visual odometer obtained by a 
vehicle stereo camera system with a low-cost GNSS 
receiver. In order to solve the positioning problem 
when the number of satellites was insufficient, the 
pseudorange measurements were directly fused with 
the sensor data. Because the GNSS/VO integration is 
similar to the GNSS/INS integration, it suffers from a 
similar issue, the performance declining due to a long 
period of GNSS outage [33]. In this study, a resilient 
smartphone based positioning approach is proposed 
by tightly integrating the monocular camera and 
GNSS signals to ensure the positioning availability 
issue in GNSS challenging and/or denied 
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environments. 

3. GNSS/VL Tightly-coupled Positioning Model 

In order to solve the positioning feasibility issue 
in the GNSS-denied environment, alternate 
navigation techniques should be involved to 
overcome the rank defect issue in positioning 
estimation. Currently, multiple transmitters are 
introduced such as the pseudolite stations, networks, 
or stations with Wi-Fi, 5G and acoustic signals, etc. 
All these signals are used to measure distances 
between transmitters and user’s devices and enhance 
the overall positioning performance. In this study, a 
ranging approach using the monocular camera is 
proposed. The features with their known coordinates 
are viewed as the ‘visual pseudolites’, which transmit 
light signals. The light signals are captured by the 
monocular camera. According to the similarity 
between the object and image spaces, the range 
between a camera focus and a visual pseudolite is 
calculated and used to collaborate with the GNSS 
signals tracked by the GNSS chip and further 
position the smartphone. The principle of the tightly 
coupled approach is illustrated in Error! Reference 

source not found.. The visual pseudolites are natural 
objects with certain easy-to-identify features, so no 
extra infrastructure is required. As the visible light is 
not affected by electromagnetic interference, it is 
more resilient than the GNSS-only positioning 
technique. In the future, a measurable 3D real map 
with enormous known coordinates information will 
be employed to assistant the identification of the 
visual pseudolites. Conceivably, the proposed method 

can also provide a resilient kinematic positioning 
solution in the GNSS denied environment.  

On the assumption that the range to a visual 
pseudolite has been successfully determined, then the 
tight fusion model of the two types of observations 
can be used in the positioning process. At first, we 
introduce the model for tightly coupling the GNSS 
and vision. The procedure of the visual range 
extraction is discussed in Section 4.  
The observation equations for the tightly-coupled 
positioning can be expressed as follows 

+
G P

C C

S i tropR

match

orbP = + +c( t - t )+ I + +
P = +

δ δ δ δ
δ

r ε
r ε





(1) 

where GP  and CP  are the GNSS pseudorange and 

the distance measured by camera respectively; r  
presents the geometric distance between a satellite or 

a visual pseudolite and a receiver; orbδ  is the error 

in GNSS satellite orbit; c is the speed of light in 

vacuum; Stδ  and Rtδ  are the clock error of 

satellites and the receiver, respectively; iI  and tropδ  

are the ionospheric and tropospheric delays on the 

GNSS signals, respectively; matchδ  is the position 

error of a visual pseudolite via the matching process, 

and Pε  and Cε  are the white noises of the GNSS 

observations and the visual ranges, respectively. 
Apparently, for the smartphone's built-in camera, the 
resolution and lens dissertation may lead to position 
errors during the feature matching process. 

How to handle the error sources is decisive on 
the final accuracy of the integrated positioning 
system. In GNSS pseudorange based positioning, the 
satellite orbit and clock correction can be obtained 
from the broadcast ephemeris. Currently, the error 
associated with the broadcast satellite orbit and 
satellite clock is about ±1-2 meters [34] and the 
remaining error is neglected in the processing 
procedure. The ionosphere and troposphere delays 
can be corrected with the empirical models. The 

Figure 1 Illustration of the tightly-coupled 
positioning approach using GNSS receiver and 
camera 
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former can be corrected with the Klobuchar model, 
BDGIM model or the NeQuick model[35], while the 
latter can be corrected with the Saastamoinen model 
or the Hopfield model. The receiver clock bias needs 
to be estimated along with the user’s unknown 
position [36].  

For the vision-derived ranges, the errors come 
from the visual pseudolite position and the ranges. 
Although we assume that the true position of a visual 
pseudolite is always known, the error is still brought 
by the matching process. However, the error in the 
matching process cannot be handled directly and can 
be adapted by adjusting the stochastic model. The 
distortion of the lens also affects the visual range 
accuracy, but it can be calibrated ahead. Since the 
visual range typically varies from a few meters to 
hundreds of meters, the atmospheric refraction can be 
ignored in this particular application. The visual 
range is independent of time, so it is free of 
time-dependent error sources. However, it is still 
possible to add time-tags for the visual ranges for 
kinematic positioning. As a result, the vision-based 
ranges suffer from fewer error sources and can be 
used to estimate the user coordinates directly.  

Another important issue for the integration is the 
unification of the spatial and temporal datums. The 
spatial datum for the visual range is defined by the 
coordinates of the visual pseudolite. Hence, only 
when the coordinate system of the visual pseudolite 
is compatible with the current geodetic datum of a 
GNSS, e.g. the World Geodetic System 84 (WGS84) 
for GPS, the Beidou coordinate systems (BDCS) or 
the International terrestrial reference frame (ITRF). 
Since the visual range does not have time information, 
it is not necessary to synchronize the visual 
information and the GNSS signals, but the visual 
range information should be updated once the user 
position changed. 

Estimating the user’s coordinates from the range 
information is not a linear problem, so the distance 
observation equation needs to be linearized first. The 
geometric distance can be expanded with the Taylor 
series as follows:  
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where (0)r is the approximate geometric distance 
from the receiver to satellites or visual pseudolite; ε 

is the nonlinear error; ( ix , iy , iz ) are the coordinates 

of satellites or visual pseudolite; ( xδ , yδ , zδ ) are 
the increment of the receiver coordinates. Neglecting 
the high order nonlinear term ε  yields  
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The linearized observation model is given as 
follows: 

( )my A XδΕ = ⋅   (4) 
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where A  is the design matrix, in which the first m 
distance observations are the GNSS satellites, while 
the last n observations are obtained from the n visual 
pseudolites. Xδ is the parameter vector to be estimated 
containing the receiver coordinates and clock bias. 

my  is the observations. The least-square solution of 

this equation system is formed as: 

1X̂ ( )T T
mA PA A Pyδ −=                      (7) 

where P is the observation weighting matrix 
determined according to the prior ranging accuracy of 
camera and GNSS measurements.  

The stochastic model is crucial for the tightly 
coupled GNSS/vision fusion. For satellite data, the 
popular elevation-based weighting strategy can be 
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used. The weighting function between the observed 
variance and the elevation angle can be expressed 
as[37]: 

2 2 2 2/ (sin( ))a bs a= +                      (8) 

where 2s  is the variance, a  is the elevation angle 
of a satellite, and a and b are the constant error 
components, which can be determined empirically or 
derived from the variance component estimation.  

The stochastic model for the visual observations 
is characterized to be inversely proportional to the 
distance. A feature that is closer to the camera may 
have better resolution and is identified with the 
smaller matching error. So it should be more accurate. 
According to the experience, the distance errors 
corresponding to different distances are obtained, and 
the corresponding weight value is calculated by 
fitting the linear function. 

4. Range Extraction From the Images 

There is no doubt the key of the GNSS/Vision tightly 
coupled approach is how to extract the visual ranges. 
Extracting the precise visual ranges follows a 
stepwise procedure, which will be introduced in this 
section. 

4.1 Principle of Extracting the Visual Ranging 

The principle of the visual ranging is the space 
resection, which can be illustrated in Figure 2  
Figure 2. The ‘visual pseudolite’ are A, B and C in 
real-world with known 3D coordinates. The 
coordinates of the features in the photo plane a, b and 
c are the observables. S is the focus of the 
smartphone camera and the focal length can be 
precisely obtained from a calibration process. Ideally, 
the position and the attitude of the smartphone can be 
estimated with 3 or more matched features. However, 
due to the limitation of the smartphone camera 
quality, the initial position cannot achieve satisfactory 
accuracy, particularly for the large scene scenario. 
The visual range can be generated with the initial 
position and the known coordinates of the visual 
pseudolite. The user position can be re-estimated by 
integrating the visual range and the GNSS signals. 
Since the precision of the GNSS signals does not 

affect by the visual range length, the precision of the 
re-estimated user position can be improved. On the 
other hand, when the visible GNSS satellite is too 
few to fix the position, the integration of the visual 
range and the GNSS signals can provide reliable 
positioning results. 

 
Figure 2 Illustration of the feature-based space 
resection 

In practice, the visual range is affected by many 
error sources. In order to obtain high precise visual 
ranges, a procedure with four steps is designed and 
presented in Error! Reference source not found.. 
After acquired the images, the distortion caused by 

the lens should be calibrated first. The second step is 
obtaining the coordinates of the features by matching 
them with the feature database or 3D models. The 
absolute coordinates of the features in the database 
are known, so the matching procedure can connect 
the coordinates of the feature in the photo plane and 
the real world. The third step is estimating the initial 
position using the multiple matched features. The last 
step is deriving the visual ranges from the initial 
position so that they can work together with the 
GNSS signals to improve the positioning availability 

Figure 3 Flowchart of the visual ranging extraction 



7 
 

and reliability. 

4.2 Camera Lens Calibration 

The similarity relationship between the image 
plane and the real world is based on the light 
propagation along a straight line, however, this 
assumption is generally not true for the camera lens 
due to the lens design or the manufacturing precision. 
Two typical distortions caused by the camera lens are 
presented in Error! Reference source not found.. 

Camera lens distortion includes barrel distortion, 
pillow distortion, and linear distortion [38], which 
can be calibrated in advance. The calibration process 
is quite straightforward. It employs a series of photos 
with regular shapes. Then the lens distortion can be 
captured. Then, the distortion can be expressed as a 
set of distortion parameters, which can be estimated 
from the photo set. The distortion can be decomposed 
as radial distortion, tangential distortion, and thin 
prism distortion [39], The tangential distortion and 
the thin prism distortion are mainly caused by 
installation error and imperfection manufacturing[40]. 
In the calibration, the distortion parameters are 
expressed as a linear function of the radius and the 
origin coordinates in the photo [41]. These distortion 
parameters are estimated to describe the non-linear 
distortion over the two-dimensional photo plane.   

After the distortion parameter estimated, these 
parameter is used to calibrate the new coming photos. 
The coordinates of the pixel in the photo can be 
calibrated one by one and the distortion caused by the 
lens can be significantly mitigated. For the 
smartphone, camera calibration is particularly 
important since its lens is not as good as the 
professional camera.  

4.3 Feature Matching 

The second step to extract the visual range is 
feature matching. The target of feature matching is 
obtaining the absolute coordinates of the feature in 
the feature database. In order to automatically 
matching the features, a feature database with labeled 
data should be established. The feature matching 
procedure is similar to look up the dictionary. At first, 
extracting features from the newly captured photos, 
then automatically find the best matches in the 
database. Since the illumination condition and the 
view angle of the new photo and the database may 
not the same, so it is important to select the features 
and the matching algorithms. There are many feature 
matching approaches, such as the gray 
intensity-based approach, edge contour-based and 
corner detection-based approaches [42], while some 
of them only perform well for a particular type of 
image. In this paper, the Scale-invariant feature 
transform (SIFT) [43] feature detection and matching 
algorithm is adopted due to its outstanding 
computation stability in the case of illumination, 
rotation and scale change. Figure 5 gives an example of 
the matched features in two photos. The two photos 
have different view angles and the same features in 
the two photos are connected with solid lines. If there 
is no feature matched in the database, then the feature 
extracted from the new images will be discarded. If 
the feature is matched successfully, the known 
coordinates in the database will be given to the 
features in the new photo, so that the connections 
between the 2D photo plane and the 3D real world 
are established. In the future, the feature database can 
be replaced with a measurable 3D map, so that it can 
be used for large-scale feature matching to support 
autonomous driving applications. 

 
Figure 5 Example of matched features using SIFT 
features in two photos with different view angles. 

4.4 Visual Range Estimation 

Figure 4 Examples of typical distortion caused by 
the camera lens 
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With the coordinates of the features known, the 
extrinsic elements of the camera can be estimated. 
The visual range estimation is based on the principle 
of space resection in photogrammetry. In Figure 2, 
the coordinates of the visual pseudolite A and the 
camera focus S in the real-world coordinate system 
are denoted as (XA, YA, ZA) and (XS, YS, ZS). The 
coordinates of the corresponding feature a in the 
image plane coordinate system are denoted as (x, y, 
-f). Based on the collinear condition equation, the 
observation equation of the known point A can be 
expressed as [44]: 

1 1 1
0

3 3 3

2 2 2
0

3 3 3

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

s s s

s s s

s s s

s s s

a X X b Y Y c Z Zx x f
a X X b Y Y c Z Z
a X X b Y Y c Z Zy y f
a X X b Y Y c Z Z

− + − + − − = − − + − + − 
− + − + − − = −
− + − + − 

 (9) 

where ai, bi and ci (i=1,2,3) are nine direction cosines 
of attitude parameters ψ, ω and κ. 

The six exterior orientation elements (XS, YS, ZS, ψ, 

ω, κ) can be obtained through the coordinates of more 
than three non-collinear visual pseudolite. The 
collinear condition equation can be expanded by the 
Taylor series and the obtained linearized observation 
equation can be shown as: 

0

0

x x x x x xx x d d d dXs dYs dZs
Xs Ys Zs

y y y y y yy y d d d dXs dYs dZs
Xs Ys Zs

ϕ ω κ
ϕ ω κ

ϕ ω κ
ϕ ω κ

∂ ∂ ∂ ∂ ∂ ∂
= + + + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = + + + + + +

∂ ∂ ∂ ∂ ∂ ∂ 

(10) 

In order to ensure the accuracy and reliability of 
parameter estimation, it is usually necessary to 
measure four or more image control points and 
corresponding image point coordinates, and use the 
least square adjustment method to solve the problem. 
At this time, the coordinates of image points (x, y) 
are taken as observation values, and the error 
equation of each image point can be listed as 

11 12 13 14 15 16

21 22 23 24 25 26

x s s s x

y s s s y

v a dX a dY a dZ a d a d a d l
v a dX a dY a dZ a d a d a d l

ϕ ω κ
ϕ ω κ

= + + + + + − 
= + + + + + − 

  (11) 

where these coefficients can be referred to [44]. 
Using the least-squares method to solve the 

exterior orientation elements can be given as 

1ˆ ( ) ( )T TA PA A Plθ −=                     (12) 

where A  represents the design matrix and P  is the 
weight matrix of the observation value and l  

contains the observation information. 
Based on the exterior orientation elements, the 

approximate coordinates of the camera can be 
calculated, which is used to figure out the distance 
from the camera to the target points with the accurate 
coordinates of the target points together.  

In general, the longer the visual range between 
the camera and the visual pseudolite, the lower the 
accuracy of external orientation elements and 
position solution. So the variance of the distance 
observation value can be determined by establishing 
an empirical model according to the distance of 
observation. 

5. Experiments 

The performance of the proposed approach was 
verified with the experiments in the Wuhan 
University campus. The method is evaluated by 
images in outdoor scenarios and compared with other 
methods. Meanwhile, we will discuss the effect of 
different factors on the performance of the method. 

5.1 Experiment Setup 

 A test field was set up on the Youyi square on 
the campus. The distance from the observation point 
to the target building varies from 50 m to 100 m. The 
GNSS data and the pictures are collected with a 
RedMi k30 ultra smartphone. The smartphone was 
put on a tripod for the GNSS data collection and the 
skyplot of the tracked GNSS satellite is presented in 
Figure 6. Signals from 10 GPS satellites are tracked 
and only pseudorange on L1 frequency is used for 
positioning in this study. In the experiment, only two 
or three GNSS satellites are used to simulate the 
GNSS denied environments. Based on GNSS static 
data, the ground truth of the position is determined by 
Post-processing kinematic (PPK) technique which 
can achieve high-precision results. A feature database 
was established with a set of historical image data. 
The features were extracted from these images and 
their true coordinates in the WGS84 coordinate 
system were obtained by combining GNSS and the 
total station. The absolute coordinate of the total 
station site was computed by GNSS relative static 
positioning. The international GNSS service (IGS) 



9 
 

station WUH2 station is used as the reference station, 
which is only a few hundred meters far away from 
the experiment site. The precise coordinate of the 
WUH2 station is precisely known. Two GNSS points 
are measured in the test site. One is the total station 
site and the other one is used as the back sight. A 
Leick GS60 prism-free total station was used to 
precisely obtain the coordinates of the visual 
pseudolite. The visual pseudolites are randomly 
distributed on the wall or the ground. The features 
extracted from new photos would be matched by 
comparing with the established feature database and 
the corresponding visual ranging information would 
be calculated. 

 
 

Figure 6 Experiment setup (left) and the skyplot of 
the tracked GNSS satellites (right) 

5.2 GNSS/VL integrated Positioning performance 

In order to evaluate the effectiveness of the 
proposed method, the positioning solutions estimated 
from GNSS-only positioning, visual-only, and 
tightly-coupled methods were compared. In the 
GNSS-only positioning scheme, all tracked GNSS 
signals by the smartphone were used. In the 
visual-only positioning scheme, all the matched 
feature points are involved to solve the user position. 
In GNSS/vision tightly-coupled positioning scheme, 
only three visible satellite is selected to simulate the 
GNSS denied environment. In this study, GNSS 
signals from satellite G22, G09 and G31 are used.  

GNSS and image data were collected on 4 
different sites using the same smartphone in this 
experiment, the positioning results and the matched 
feature location are presented in Figure 7. The figure 
presents the position obtained with the visual 
localization-only, GNSS-only and tightly-coupled 
solution respectively. The true coordinates were 

computed with the static relative GNSS data 
processing. Most features in this experiment are 
located on the building wall. Each image may only 
contain a portion of the features. The figure indicates 
that all the three positioning schemes achieve meter 
level accuracy, but the tightly-coupled solution is 
closer to the reference solution than the other two 
solutions. 

 
Figure 7 Positioning results of different positioning 
schemes 

The root mean squares error (RMSE) of the 
three positioning schemes are listed in Table 1. The 
table indicates that smartphone-based GNSS 
positioning achieves several meter level accuracy and 
the up direction achieves the poorest positioning 
accuracy. With enough ‘visual pseudolites’, the 
visual-only positioning algorithm also achieves meter 
level accuracy as well and the visual-only positioning 
achieves the best accuracy in the up direction. In the 
tightly coupled solution, the positioning accuracy 
inherits the advantages of both techniques and thus 
achieving the best precision accuracy among all the 
three positioning schemes with its 3D RMSE 5.561m. 
The table also indicates that the integration of the 
visual range can achieve fairly good positioning 
results even in 3 visible GNSS satellite scenarios. 

Table 1 Comparison of the position accuracy (RMSE) 
using different positioning schemes 

Direction GNSS 
Only 

VL Only GNSS/VL 

North 2.463 m 4.269 m 2.758 m 
East 4.176 m 6.350 m 4.641 m 
Up 9.988 m 0.534 m 1.334 m 
3D 11.103 m 7.671 m 5.561 m 

An example of the positioning error time series 
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using the GPS-only and GPS/VL is presented in 
Figure 8. The figure explained how did the GPS/VL 
combined system improves the GPS-only positioning 
accuracy. Due to the poor quality of the smartphone's 
built-in GNSS antenna, the GPS-only positioning 
time series is quite noisy. By integrating with the 
visual range from images, the accuracy in the north 
direction and the up direction was dramatically 
improved, while the positioning accuracy in the east 
direction did not improve much, which may due to its 
poor observability in the visual ranging system.  

For the tightly-coupled positioning method, 
when the number of observable satellites is 
insufficient, the visual ranging information will be 
involved in the positioning process as pseudo 
satellites. The positioning accuracy is improved 
(27.5%) compared with that of visual-only 
positioning and is more significantly improved 
(49.9%) subject to the GNSS-only solution. In detail, 
the method of tightly-coupled GNSS/vision ensures 
that the positioning error in each direction is within a 
certain range, to provide stable and high-precision 
positioning results in GNSS-hostile environments. 

 
Figure 8 Positioning error time series comparison of the 
GNSS and GNSS/VL combined positioning. 
 

5.3 Impact of visible GNSS satellite number on the 
positioning accuracy 

In order to investigate the performance of the 
tightly-coupled approaches in the GNSS denied 
environment, we designed an experiment to 
investigate the positioning accuracy with different 
visible satellite numbers. Figure 9 shows the 
positioning error of the tightly coupled positioning 

method with different visible GNSS satellite numbers. 
We selected two visible GNSS satellites and three 
visible GNSS satellite scenarios respectively and 
integrating the GNSS signals with the visual ranges 
from different images and then evaluate their 
positioning accuracy. Since different images have 
different feature numbers, so the positioning accuracy 
is different. The RMSE of positioning results from 
different numbers of satellites are summarized in 
Table 2. The results show that 3 visible satellite 
scenario generally achieves better accuracy than the 2 
visible satellite scenarios. With 3 visible GNSS 
satellites, the precision improvement achieves about 
33.5%~57.3%, which indicates the GNSS satellite 
has a substantial contribution to the integrated 
positioning results, particularly when the GNSS 
visible satellite number is small. The number and the 
geometry of the visual pseudolite also have an impact 
on the final positioning accuracy. Integration of one 
GNSS signal with the visual ranges is meaningless 
since the GNSS signals have no contribution to the 
positioning results due to the presence of the receiver 
clock parameter. For more visible satellite number 
scenario, GNSS can provide positioning service alone, 
but integrating with the visual ranges still benefit for 
the precision improvement in the up direction.  

 

Figure 9 Positioning error of tightly-coupled method 
with different visible satellite number 

Table 2 Comparison of the positional RMSE of the 
tightly-coupled method based on different visible 
satellite number 

RMSE(m) 2 GNSS 
satellites 

3 GNSS 
satellites 

Improvement 

North 6.703 4.458 33.49% 
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East 5.580 2.382 57.31% 
Up 0.885 0.413 53.35% 
3D 8.766 5.072 42.15% 

 

5.4 Feature number impact of the positioning 
accuracy 

There is no doubt that the matched feature 
number is an important factor for the tightly 
combined positioning system. An experiment was 
designed to investigate this problem. We selected 3 
visible satellites in this experiment according to the 
discussion in section 5.3. We tested 3 visual GNSS 
satellites combined with 5, 7 and 9 visual pseudolite 
respectively and the results are presented in Figure 10. 
In this test, 11 images are used in the data processing. 
The figure shows that more visible pseudolite may 
improve the tightly coupled positioning accuracy, but 
it also depends on the geometry distribution of the 
visual pseudolite. For example, 7 visual pseudolite 
cases did not achieve precision improvement in the 
east direction comparing to the 5 visual pseudolite 
cases. 9 visual pseudolite case even achieves poorer 
accuracy in the up direction than 7 visual pseudolite 
cases. It concludes that more visual pseudolite may 
improve the positioning accuracy, but it also depends 
on the geometry distribution of the visual pseudolite. 
This conclusion may not hold for dense visual 
pseudolite cases since the positioning accuracy will 
convergence to the visual-only solution as the visual 
pseudolite number increases. 

 

Figure 10 Positioning accuracy of tightly-coupled 
method with different feature number 

6. Conclusion 

Positioning in a GNSS denied environment has 

been a challenge for a long time. This paper proposed 
a smartphone-based GNSS/monocular camera 
tightly-coupled positioning method to solve the 
GNSS low positioning availability problem in 
GNSS-hostile environments. With this method, the 
feature points are viewed as ‘visual pseudolites’ and 
the visual ranges are obtained via an image 
processing procedure. Then, these visual ranges are 
combined with the GNSS ranges to calculate the 
user's positions. The performance of the 
tightly-coupled approach was verified by a field test 
using a smartphone.  

The results showed that the tightly-coupled 
positioning method achieved about ±5.6-meter (1σ, 
3D) positioning accuracy in GNSS-hostile 
environments, and its positioning accuracy is 
significantly higher than that of GNSS-only and 
vision-only solutions. The tightly-coupled solution 
delivered a resilient solution in the GNSS denied 
environment. In comparison with the GNSS only 
solution, the tightly-coupled solution has 
dramatically improved the positioning accuracy in 
the vertical direction. The tightly coupled positioning 
accuracy varies with the number of the feature points 
and the visible GNSS satellites. 

This paper only builds a proof-of-concept 
system to verify the validness of the tightly coupled 
approach, many issues are not remained unconsidered 
in this study due to the time limit, e.g. the distribution 
form of feature points, the synchronization of the 
GNSS and the camera, the positioning performance 
in the mobile platform, etc. With an improved feature 
matching algorithm, it is possible to integrate the 
GNSS ranges with the real-time video to conduct 
kinematic positioning. A measurable 3D map can also 
be added to substantially improve the service 
coverage of the tightly coupled solution and these 
topics will be in our next step.  
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